Josyl Mariela Rocamora Reyes , Ivan Wang-Hei Ho , Man-Wai Mak
{"title":"Wi-Fi CSI fingerprinting-based indoor positioning using deep learning and vector embedding for temporal stability","authors":"Josyl Mariela Rocamora Reyes , Ivan Wang-Hei Ho , Man-Wai Mak","doi":"10.1016/j.eswa.2024.125802","DOIUrl":null,"url":null,"abstract":"<div><div>Fingerprinting systems based on channel state information (CSI) often rely on updated databases to achieve indoor positioning with high accuracy and resolution of centimeter-level. However, regularly maintaining a large fingerprint database is labor-intensive and computationally expensive. In this paper, we explore the use of deep learning for recognizing long-term temporal CSI data, wherein the site survey was completed weeks before the online testing phase. Compared to other positioning algorithms such as time-reversal resonating strength (TRRS), support vector machines (SVM), and Gaussian classifiers, our deep neural network (DNN) model shows a performance improvement of up to 10% for multi-position classification with centimeter-level resolution. We also exploit vector embeddings, such as i-vectors and d-vectors, which are traditionally employed in speech processing. With d-vectors as the compact representation of CSI, storage and processing requirements can be reduced without affecting performance, facilitating deployments on resource-constrained devices in IoT networks. By injecting i-vectors into a hidden layer, the DNN model originally for multi-position localization can be transformed to location-specific DNN to detect whether the device is static or has moved, resulting in a performance boost from 75.47% to 80.62%. This model adaptation requires a smaller number of recently collected fingerprints as opposed to a full database.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"264 ","pages":"Article 125802"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424026691","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Fingerprinting systems based on channel state information (CSI) often rely on updated databases to achieve indoor positioning with high accuracy and resolution of centimeter-level. However, regularly maintaining a large fingerprint database is labor-intensive and computationally expensive. In this paper, we explore the use of deep learning for recognizing long-term temporal CSI data, wherein the site survey was completed weeks before the online testing phase. Compared to other positioning algorithms such as time-reversal resonating strength (TRRS), support vector machines (SVM), and Gaussian classifiers, our deep neural network (DNN) model shows a performance improvement of up to 10% for multi-position classification with centimeter-level resolution. We also exploit vector embeddings, such as i-vectors and d-vectors, which are traditionally employed in speech processing. With d-vectors as the compact representation of CSI, storage and processing requirements can be reduced without affecting performance, facilitating deployments on resource-constrained devices in IoT networks. By injecting i-vectors into a hidden layer, the DNN model originally for multi-position localization can be transformed to location-specific DNN to detect whether the device is static or has moved, resulting in a performance boost from 75.47% to 80.62%. This model adaptation requires a smaller number of recently collected fingerprints as opposed to a full database.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.