Diffusion coefficients calculations of 110mAg in ZrC at very high temperature using machine-learning interatomic potential

IF 2.8 2区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jae Joon Kim , Eung-Seon Kim , Hyun Woo Seong , Ho Jin Ryu
{"title":"Diffusion coefficients calculations of 110mAg in ZrC at very high temperature using machine-learning interatomic potential","authors":"Jae Joon Kim ,&nbsp;Eung-Seon Kim ,&nbsp;Hyun Woo Seong ,&nbsp;Ho Jin Ryu","doi":"10.1016/j.jnucmat.2024.155532","DOIUrl":null,"url":null,"abstract":"<div><div>The ternary machine-learning interatomic potential for a Zr–C–Ag system was developed using first-principles calculations, moment tensor potential, and molecular dynamics simulations to calculate the diffusion coefficient of Ag in ZrC. The developed potential was utilized to investigate the vacancy formation energy, Ag substitutional energy, binding energy between Ag and vacancy, Ag interstitial energy, migration energy of Ag to an adjacent C vacancy in ZrC, and thermal expansion of ZrC. The results conformed to previously reported experimental and computational results, thereby validating the accuracy of the developed potential. The diffusion coefficients of Ag in ZrC<sub>0.94</sub> and ZrC<sub>0.97</sub> in the temperature range of 2800–3200 K were calculated using molecular dynamics simulations with the developed machine-learning interatomic potential. These calculation results can aid the safety analysis of radioactive <sup>110m</sup>Ag release in nuclear thermal propulsion reactors.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"605 ","pages":"Article 155532"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524006330","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The ternary machine-learning interatomic potential for a Zr–C–Ag system was developed using first-principles calculations, moment tensor potential, and molecular dynamics simulations to calculate the diffusion coefficient of Ag in ZrC. The developed potential was utilized to investigate the vacancy formation energy, Ag substitutional energy, binding energy between Ag and vacancy, Ag interstitial energy, migration energy of Ag to an adjacent C vacancy in ZrC, and thermal expansion of ZrC. The results conformed to previously reported experimental and computational results, thereby validating the accuracy of the developed potential. The diffusion coefficients of Ag in ZrC0.94 and ZrC0.97 in the temperature range of 2800–3200 K were calculated using molecular dynamics simulations with the developed machine-learning interatomic potential. These calculation results can aid the safety analysis of radioactive 110mAg release in nuclear thermal propulsion reactors.
利用机器学习原子间势计算110mAg在ZrC中的高温扩散系数
利用第一性原理计算、矩张量势和分子动力学模拟,建立了Zr-C-Ag体系的三元机器学习原子间势,计算了Ag在ZrC中的扩散系数。利用开发电位研究了空位形成能、Ag取代能、Ag与空位之间的结合能、Ag间隙能、Ag向ZrC中相邻C空位的迁移能以及ZrC的热膨胀。结果与先前报道的实验和计算结果一致,从而验证了开发电位的准确性。利用分子动力学模拟计算了在2800 ~ 3200 K温度范围内,Ag在ZrC0.94和ZrC0.97中的扩散系数。计算结果可为核动力推进反应堆110mAg放射性释放的安全性分析提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nuclear Materials
Journal of Nuclear Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
25.80%
发文量
601
审稿时长
63 days
期刊介绍: The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome. The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example. Topics covered by JNM Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior. Materials aspects of the entire fuel cycle. Materials aspects of the actinides and their compounds. Performance of nuclear waste materials; materials aspects of the immobilization of wastes. Fusion reactor materials, including first walls, blankets, insulators and magnets. Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties. Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信