Daniele Fatto' Offidani , Enrique Martinez , Emmanuelle A. Marquis
{"title":"On the analysis of radiation-induced segregation at ion-irradiated grain boundaries","authors":"Daniele Fatto' Offidani , Enrique Martinez , Emmanuelle A. Marquis","doi":"10.1016/j.jnucmat.2024.155533","DOIUrl":null,"url":null,"abstract":"<div><div>Radiation-induced segregation has been extensively studied in alloys irradiated with neutrons and charged particles (protons and ions). Unlike neutrons and protons, heavy ions have a very short penetration depth (typically a few micrometers), and for this reason, the free surface and end-of-range region can significantly affect radiation-induced microstructural changes. These effects are well-documented for void swelling and dislocation loops; however, they are much less so for radiation-induced segregation at grain boundaries. To address this gap, a model Fe–Ni–Cr alloy was irradiated using Fe ions and grain boundary chemistry was quantified as a function of depth and dose. The impacts of surface oxidation and grain boundary diffusion on radiation-induced segregation are discussed.</div></div>","PeriodicalId":373,"journal":{"name":"Journal of Nuclear Materials","volume":"605 ","pages":"Article 155533"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022311524006342","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Radiation-induced segregation has been extensively studied in alloys irradiated with neutrons and charged particles (protons and ions). Unlike neutrons and protons, heavy ions have a very short penetration depth (typically a few micrometers), and for this reason, the free surface and end-of-range region can significantly affect radiation-induced microstructural changes. These effects are well-documented for void swelling and dislocation loops; however, they are much less so for radiation-induced segregation at grain boundaries. To address this gap, a model Fe–Ni–Cr alloy was irradiated using Fe ions and grain boundary chemistry was quantified as a function of depth and dose. The impacts of surface oxidation and grain boundary diffusion on radiation-induced segregation are discussed.
期刊介绍:
The Journal of Nuclear Materials publishes high quality papers in materials research for nuclear applications, primarily fission reactors, fusion reactors, and similar environments including radiation areas of charged particle accelerators. Both original research and critical review papers covering experimental, theoretical, and computational aspects of either fundamental or applied nature are welcome.
The breadth of the field is such that a wide range of processes and properties in the field of materials science and engineering is of interest to the readership, spanning atom-scale processes, microstructures, thermodynamics, mechanical properties, physical properties, and corrosion, for example.
Topics covered by JNM
Fission reactor materials, including fuels, cladding, core structures, pressure vessels, coolant interactions with materials, moderator and control components, fission product behavior.
Materials aspects of the entire fuel cycle.
Materials aspects of the actinides and their compounds.
Performance of nuclear waste materials; materials aspects of the immobilization of wastes.
Fusion reactor materials, including first walls, blankets, insulators and magnets.
Neutron and charged particle radiation effects in materials, including defects, transmutations, microstructures, phase changes and macroscopic properties.
Interaction of plasmas, ion beams, electron beams and electromagnetic radiation with materials relevant to nuclear systems.