{"title":"Transformer-based multiview spatiotemporal feature interactive fusion for human action recognition in depth videos","authors":"Hanbo Wu, Xin Ma, Yibin Li","doi":"10.1016/j.image.2024.117244","DOIUrl":null,"url":null,"abstract":"<div><div>Spatiotemporal feature modeling is the key to human action recognition task. Multiview data is helpful in acquiring numerous clues to improve the robustness and accuracy of feature description. However, multiview action recognition has not been well explored yet. Most existing methods perform action recognition only from a single view, which leads to the limited performance. Depth data is insensitive to illumination and color variations and offers significant advantages by providing reliable 3D geometric information of the human body. In this study, we concentrate on action recognition from depth videos and introduce a transformer-based framework for the interactive fusion of multiview spatiotemporal features, facilitating effective action recognition through deep integration of multiview information. Specifically, the proposed framework consists of intra-view spatiotemporal feature modeling (ISTFM) and cross-view feature interactive fusion (CFIF). Firstly, we project a depth video into three orthogonal views to construct multiview depth dynamic volumes that describe the 3D spatiotemporal evolution of human actions. ISTFM takes multiview depth dynamic volumes as input to extract spatiotemporal features of three views with 3D CNN, then applies self-attention mechanism in transformer to model global context dependency within each view. CFIF subsequently extends self-attention into cross-attention to conduct deep interaction between different views, and further integrates cross-view features together to generate a multiview joint feature representation. Our proposed method is tested on two large-scale RGBD datasets by extensive experiments to demonstrate the remarkable improvement for enhancing the recognition performance.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"131 ","pages":"Article 117244"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524001450","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Spatiotemporal feature modeling is the key to human action recognition task. Multiview data is helpful in acquiring numerous clues to improve the robustness and accuracy of feature description. However, multiview action recognition has not been well explored yet. Most existing methods perform action recognition only from a single view, which leads to the limited performance. Depth data is insensitive to illumination and color variations and offers significant advantages by providing reliable 3D geometric information of the human body. In this study, we concentrate on action recognition from depth videos and introduce a transformer-based framework for the interactive fusion of multiview spatiotemporal features, facilitating effective action recognition through deep integration of multiview information. Specifically, the proposed framework consists of intra-view spatiotemporal feature modeling (ISTFM) and cross-view feature interactive fusion (CFIF). Firstly, we project a depth video into three orthogonal views to construct multiview depth dynamic volumes that describe the 3D spatiotemporal evolution of human actions. ISTFM takes multiview depth dynamic volumes as input to extract spatiotemporal features of three views with 3D CNN, then applies self-attention mechanism in transformer to model global context dependency within each view. CFIF subsequently extends self-attention into cross-attention to conduct deep interaction between different views, and further integrates cross-view features together to generate a multiview joint feature representation. Our proposed method is tested on two large-scale RGBD datasets by extensive experiments to demonstrate the remarkable improvement for enhancing the recognition performance.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.