Finite-time-convergent support vector neural dynamics for classification

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mei Liu , Qihai Jiang , Hui Li , Xinwei Cao , Xin Lv
{"title":"Finite-time-convergent support vector neural dynamics for classification","authors":"Mei Liu ,&nbsp;Qihai Jiang ,&nbsp;Hui Li ,&nbsp;Xinwei Cao ,&nbsp;Xin Lv","doi":"10.1016/j.neucom.2024.128810","DOIUrl":null,"url":null,"abstract":"<div><div>Support vector machine (SVM) is a popular binary classification algorithm widely utilized in various fields due to its accuracy and versatility. However, most of the existing research involving SVMs stays at the application level, and there is few research on optimizing the support vector solving process. Therefore, it is an alternative way to optimize the support vector solving process for improving the classification performance via constructing new solving methods. Recent research has demonstrated that neural dynamics exhibit robust solving performance and high accuracy. Motivated by this inspiration, this paper leverages neural dynamics to improve the accuracy and robustness of SVM solutions. Specifically, this paper models the solving process of SVM as a standard quadratic programming (QP) problem. Then, a support vector neural dynamics (SVND) model is specifically developed to provide the optimal solution to the aforementioned QP problem, with theoretical analysis confirming its ability to achieve global convergence. Datasets of varying sizes from various sources are employed to validate the effectiveness of the designed SVND model. Experimental results show that the designed SVND model demonstrates superior classification accuracy and robustness compared to other classical machine learning algorithms. The source code is available at <span><span>https://github.com/LongJin-lab/NC_SVND</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"617 ","pages":"Article 128810"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224015819","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Support vector machine (SVM) is a popular binary classification algorithm widely utilized in various fields due to its accuracy and versatility. However, most of the existing research involving SVMs stays at the application level, and there is few research on optimizing the support vector solving process. Therefore, it is an alternative way to optimize the support vector solving process for improving the classification performance via constructing new solving methods. Recent research has demonstrated that neural dynamics exhibit robust solving performance and high accuracy. Motivated by this inspiration, this paper leverages neural dynamics to improve the accuracy and robustness of SVM solutions. Specifically, this paper models the solving process of SVM as a standard quadratic programming (QP) problem. Then, a support vector neural dynamics (SVND) model is specifically developed to provide the optimal solution to the aforementioned QP problem, with theoretical analysis confirming its ability to achieve global convergence. Datasets of varying sizes from various sources are employed to validate the effectiveness of the designed SVND model. Experimental results show that the designed SVND model demonstrates superior classification accuracy and robustness compared to other classical machine learning algorithms. The source code is available at https://github.com/LongJin-lab/NC_SVND.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信