Detection of video transcoding from AVC to HEVC based on Intra Prediction Feature Maps

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yueneng Wang, Zhongjie Mi, Xinghao Jiang, Tanfeng Sun
{"title":"Detection of video transcoding from AVC to HEVC based on Intra Prediction Feature Maps","authors":"Yueneng Wang,&nbsp;Zhongjie Mi,&nbsp;Xinghao Jiang,&nbsp;Tanfeng Sun","doi":"10.1016/j.neucom.2024.128935","DOIUrl":null,"url":null,"abstract":"<div><div>As the High Efficiency Video Coding (HEVC) standard gains popularity, forgers are more inclined to transcode videos into HEVC format from the previous Advanced Video Coding (AVC) format. To verify the originality and authenticity of videos, it is crucial to propose a method for transcoded HEVC video detection. In this paper, a novel method is proposed to detect video transcoding from AVC to HEVC (AVC-HEVC). Analysis shows that the intra prediction mode is sensitive to spatial loss introduced by previous AVC encoding in the transcoding process. Thus, the intra prediction modes are extracted from the luminance and chrominance components to create Intra Prediction Feature Maps (IPFMs). Subsequently, a Dual-flow Attention-based MobileNet (DAM-Net) is introduced to learn the deep representation of AVC-HEVC transcoding artifacts. Finally, video level results are derived from the frame level analysis provided by DAM-Net. Extensive experiment results demonstrate that the performance of the proposed method outperforms the existing methods in the detection of AVC-HEVC transcoding.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"617 ","pages":"Article 128935"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224017065","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

As the High Efficiency Video Coding (HEVC) standard gains popularity, forgers are more inclined to transcode videos into HEVC format from the previous Advanced Video Coding (AVC) format. To verify the originality and authenticity of videos, it is crucial to propose a method for transcoded HEVC video detection. In this paper, a novel method is proposed to detect video transcoding from AVC to HEVC (AVC-HEVC). Analysis shows that the intra prediction mode is sensitive to spatial loss introduced by previous AVC encoding in the transcoding process. Thus, the intra prediction modes are extracted from the luminance and chrominance components to create Intra Prediction Feature Maps (IPFMs). Subsequently, a Dual-flow Attention-based MobileNet (DAM-Net) is introduced to learn the deep representation of AVC-HEVC transcoding artifacts. Finally, video level results are derived from the frame level analysis provided by DAM-Net. Extensive experiment results demonstrate that the performance of the proposed method outperforms the existing methods in the detection of AVC-HEVC transcoding.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信