Silvestre Malta , Pedro Pinto , Manuel Fernández-Veiga
{"title":"Optimizing 5G network slicing with DRL: Balancing eMBB, URLLC, and mMTC with OMA, NOMA, and RSMA","authors":"Silvestre Malta , Pedro Pinto , Manuel Fernández-Veiga","doi":"10.1016/j.jnca.2024.104068","DOIUrl":null,"url":null,"abstract":"<div><div>The advent of 5th Generation (5G) networks has introduced the strategy of network slicing as a paradigm shift, enabling the provision of services with distinct Quality of Service (QoS) requirements. The 5th Generation New Radio (5G NR) standard complies with the use cases Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC), which demand a dynamic adaptation of network slicing to meet the diverse traffic needs. This dynamic adaptation presents both a critical challenge and a significant opportunity to improve 5G network efficiency. This paper proposes a Deep Reinforcement Learning (DRL) agent that performs dynamic resource allocation in 5G wireless network slicing according to traffic requirements of the 5G use cases within two scenarios: eMBB with URLLC and eMBB with mMTC. The DRL agent evaluates the performance of different decoding schemes such as Orthogonal Multiple Access (OMA), Non-Orthogonal Multiple Access (NOMA), and Rate Splitting Multiple Access (RSMA) and applies the best decoding scheme in these scenarios under different network conditions. The DRL agent has been tested to maximize the sum rate in scenario eMBB with URLLC and to maximize the number of successfully decoded devices in scenario eMBB with mMTC, both with different combinations of number of devices, power gains and number of allocated frequencies. The results show that the DRL agent dynamically chooses the best decoding scheme and presents an efficiency in maximizing the sum rate and the decoded devices between 84% and 100% for both scenarios evaluated.</div></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"234 ","pages":"Article 104068"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804524002455","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of 5th Generation (5G) networks has introduced the strategy of network slicing as a paradigm shift, enabling the provision of services with distinct Quality of Service (QoS) requirements. The 5th Generation New Radio (5G NR) standard complies with the use cases Enhanced Mobile Broadband (eMBB), Ultra-Reliable Low Latency Communications (URLLC), and Massive Machine Type Communications (mMTC), which demand a dynamic adaptation of network slicing to meet the diverse traffic needs. This dynamic adaptation presents both a critical challenge and a significant opportunity to improve 5G network efficiency. This paper proposes a Deep Reinforcement Learning (DRL) agent that performs dynamic resource allocation in 5G wireless network slicing according to traffic requirements of the 5G use cases within two scenarios: eMBB with URLLC and eMBB with mMTC. The DRL agent evaluates the performance of different decoding schemes such as Orthogonal Multiple Access (OMA), Non-Orthogonal Multiple Access (NOMA), and Rate Splitting Multiple Access (RSMA) and applies the best decoding scheme in these scenarios under different network conditions. The DRL agent has been tested to maximize the sum rate in scenario eMBB with URLLC and to maximize the number of successfully decoded devices in scenario eMBB with mMTC, both with different combinations of number of devices, power gains and number of allocated frequencies. The results show that the DRL agent dynamically chooses the best decoding scheme and presents an efficiency in maximizing the sum rate and the decoded devices between 84% and 100% for both scenarios evaluated.
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.