{"title":"Filter competition results in more robust Convolutional Neural Networks","authors":"Bo Gao , Michael W. Spratling","doi":"10.1016/j.neucom.2024.128972","DOIUrl":null,"url":null,"abstract":"<div><div>Convolutional layers, one of the basic building blocks of deep learning architectures, contain numerous trainable filters for feature extraction. These filters operate independently which can result in distinct filters learning similar weights and extracting similar features. In contrast, competition mechanisms in the brain contribute to the sharpening of the responses of activated neurons, enhancing the contrast and selectivity of individual neurons towards specific stimuli, and simultaneously increasing the diversity of responses across the population of neurons. Inspired by this observation, this paper proposes a novel convolutional layer based on the theory of predictive coding, in which each filter effectively tries to block other filters from responding to the input features which it represents. In this way, filters learn to become more distinct which increases the diversity of the extracted features. When replacing standard convolutional layers with the proposed layers the performance of classification networks is not only improved on ImageNet but also significantly boosted on eight robustness benchmarks, as well as on downstream detection and segmentation tasks. Most notably, ResNet50/101/152 robust accuracy increases by 15.9%/20.0%/20.9% under FGSM attack, and by 10.5%/14.7%/15.0% under PGD attack.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"617 ","pages":"Article 128972"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224017430","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Convolutional layers, one of the basic building blocks of deep learning architectures, contain numerous trainable filters for feature extraction. These filters operate independently which can result in distinct filters learning similar weights and extracting similar features. In contrast, competition mechanisms in the brain contribute to the sharpening of the responses of activated neurons, enhancing the contrast and selectivity of individual neurons towards specific stimuli, and simultaneously increasing the diversity of responses across the population of neurons. Inspired by this observation, this paper proposes a novel convolutional layer based on the theory of predictive coding, in which each filter effectively tries to block other filters from responding to the input features which it represents. In this way, filters learn to become more distinct which increases the diversity of the extracted features. When replacing standard convolutional layers with the proposed layers the performance of classification networks is not only improved on ImageNet but also significantly boosted on eight robustness benchmarks, as well as on downstream detection and segmentation tasks. Most notably, ResNet50/101/152 robust accuracy increases by 15.9%/20.0%/20.9% under FGSM attack, and by 10.5%/14.7%/15.0% under PGD attack.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.