Spatiotemporal subspace variational autoencoder with repair mechanism for traffic data imputation

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jialong Qian, Shiqi Zhang, Yuzhuang Pian, Xinyi Chen, Yonghong Liu
{"title":"Spatiotemporal subspace variational autoencoder with repair mechanism for traffic data imputation","authors":"Jialong Qian,&nbsp;Shiqi Zhang,&nbsp;Yuzhuang Pian,&nbsp;Xinyi Chen,&nbsp;Yonghong Liu","doi":"10.1016/j.neucom.2024.128948","DOIUrl":null,"url":null,"abstract":"<div><div>High-quality spatial–temporal traffic data is crucial for the functioning of modern smart transportation systems. However, the collection and storage of traffic data in real-world scenarios are often hindered by many factors, causing data loss that greatly affects decision-making. Different modes of data absence result in varying degrees of information loss, which introduces considerable challenges to the precise imputation of traffic data. Many existing studies are concentrate on two main aspects: the examination of data distribution and the extraction of spatiotemporal relationships. On the one hand, methods that focus on distribution fitting do not require a large volume of observational data but often fail to capture spatial–temporal relationships, leading to overly smooth results. On the other hand, methods that aim to identify spatial–temporal relationships, while offering higher accuracy in fitting, demand a substantial amount of high-quality historical data. Taking into account the merits and demerits of both two paradigm, we developed a novel unsupervised two-stage model simultaneously takes into account the spatiotemporal distribution and relationships, termed Spatiotemporal Subspace Variational Autoencoder with Repair Mechanism (SVAE-R). In stage one, we introduced the concept of spatiotemporal subspace, which not only mitigates the noise impact caused by data sparsity but also reduces the cost for the model to find the distribution. In stage two, we designed a simple repair structure to capture spatial–temporal relationships among data through graph convolution network(GCN) and gated recurrent units(GRU), revising the details of the data. We have evaluated our model on two authentic datasets, and it has exhibited a high degree of robustness, maintaining effective performance even under extreme data loss conditions.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"617 ","pages":"Article 128948"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224017193","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

High-quality spatial–temporal traffic data is crucial for the functioning of modern smart transportation systems. However, the collection and storage of traffic data in real-world scenarios are often hindered by many factors, causing data loss that greatly affects decision-making. Different modes of data absence result in varying degrees of information loss, which introduces considerable challenges to the precise imputation of traffic data. Many existing studies are concentrate on two main aspects: the examination of data distribution and the extraction of spatiotemporal relationships. On the one hand, methods that focus on distribution fitting do not require a large volume of observational data but often fail to capture spatial–temporal relationships, leading to overly smooth results. On the other hand, methods that aim to identify spatial–temporal relationships, while offering higher accuracy in fitting, demand a substantial amount of high-quality historical data. Taking into account the merits and demerits of both two paradigm, we developed a novel unsupervised two-stage model simultaneously takes into account the spatiotemporal distribution and relationships, termed Spatiotemporal Subspace Variational Autoencoder with Repair Mechanism (SVAE-R). In stage one, we introduced the concept of spatiotemporal subspace, which not only mitigates the noise impact caused by data sparsity but also reduces the cost for the model to find the distribution. In stage two, we designed a simple repair structure to capture spatial–temporal relationships among data through graph convolution network(GCN) and gated recurrent units(GRU), revising the details of the data. We have evaluated our model on two authentic datasets, and it has exhibited a high degree of robustness, maintaining effective performance even under extreme data loss conditions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信