{"title":"Formation of vanadium dioxide nanocrystal arrays via post-growth annealing for stable and energy-efficient switches","authors":"K.E. Kapoguzov , S.V. Mutilin , N.I. Lysenko , V.N. Kichay , L.V. Yakovkina , B.V. Voloshin , V.A. Seleznev","doi":"10.1016/j.physe.2024.116165","DOIUrl":null,"url":null,"abstract":"<div><div>The abrupt and reversible semiconductor-metal phase transition in vanadium dioxide nanocrystals has attracted considerable attention for potential applications in oxide electronics, including neuromorphic systems. This study presents a systematic investigation of post-growth annealing conditions for the formation of single VO<sub>2</sub> M-phase nanocrystals arrays from VO<sub>x</sub> films synthesized by atomic layer deposition. The composition of the initial VO<sub>x</sub> films and the annealing parameters were found to significantly affect the morphology, phase composition and electrical properties of the obtained single nanocrystal arrays. Our results demonstrate that the formation of VO<sub>2</sub> M-phase nanocrystal arrays occurs at annealing temperatures of 650 °C and above, irrespective of the initial film composition. More homogeneous in size nanocrystals are formed from initial VO<sub>x</sub> films with higher V<sup>+4</sup> content. The structures with the initial V<sup>+4</sup> content of 60 % annealed at 650 °C for 2 h demonstrates the resistive switching with an energy less than 150 fJ, and a total number of stable switching cycles more than 10<sup>1</sup>⁰. Our results pave the way for the novel energy-efficient nanoelectronic and nanophotonic devices based on VO₂ nanoparticles.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"167 ","pages":"Article 116165"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724002698","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The abrupt and reversible semiconductor-metal phase transition in vanadium dioxide nanocrystals has attracted considerable attention for potential applications in oxide electronics, including neuromorphic systems. This study presents a systematic investigation of post-growth annealing conditions for the formation of single VO2 M-phase nanocrystals arrays from VOx films synthesized by atomic layer deposition. The composition of the initial VOx films and the annealing parameters were found to significantly affect the morphology, phase composition and electrical properties of the obtained single nanocrystal arrays. Our results demonstrate that the formation of VO2 M-phase nanocrystal arrays occurs at annealing temperatures of 650 °C and above, irrespective of the initial film composition. More homogeneous in size nanocrystals are formed from initial VOx films with higher V+4 content. The structures with the initial V+4 content of 60 % annealed at 650 °C for 2 h demonstrates the resistive switching with an energy less than 150 fJ, and a total number of stable switching cycles more than 101⁰. Our results pave the way for the novel energy-efficient nanoelectronic and nanophotonic devices based on VO₂ nanoparticles.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures