{"title":"Impact of strain and electron–phonon coupling on thermoelectric performance of Germanene","authors":"Neelesh Gupta , Anup Shrivastava , Jost Adam","doi":"10.1016/j.physe.2024.116150","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript describes the thermoelectric properties of monolayer germanene under the influence of biaxial strain using the combined approach of ab initio and semi-classical Boltzmann transport theory. To achieve excellent precision in the estimation of the thermoelectric behavior of strained germanene, the research delves into the temperature-dependent scattering time, particularly emphasizing the electron–phonon coupling effect. Incorporating both optical and acoustic phonons is always crucial and key for precisely estimating the scattering time, surpassing the limitations of the deformation potential approximation method. By examining the impact of strain on monolayer germanene and accounting for its scattering time, this approach provides a more practical means of gauging the thermoelectric performance of germanene under the presence of bi-axial strain. Moreover, the study extends its analysis to doped germanene with bi-axial strain, employing the rigid band approximation to investigate its thermoelectric performance. The research extensively estimates the transport properties for both intrinsic and extrinsic germanene, utilizing the hybrid functional HSE06. Additionally, the lattice thermal conductivity of germanene is estimated and compared for the strained and unstrained conditions. The analysis of thermal conductivity involves considering the effects of group velocity and phonon scattering time, providing insights into the nature of heat transport in strained germanene systems. Overall, this comprehensive study contributes to a deeper understanding of the thermoelectric properties of germanene under strain and lays the foundations for potential applications in electronic and thermal devices.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"167 ","pages":"Article 116150"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724002546","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This manuscript describes the thermoelectric properties of monolayer germanene under the influence of biaxial strain using the combined approach of ab initio and semi-classical Boltzmann transport theory. To achieve excellent precision in the estimation of the thermoelectric behavior of strained germanene, the research delves into the temperature-dependent scattering time, particularly emphasizing the electron–phonon coupling effect. Incorporating both optical and acoustic phonons is always crucial and key for precisely estimating the scattering time, surpassing the limitations of the deformation potential approximation method. By examining the impact of strain on monolayer germanene and accounting for its scattering time, this approach provides a more practical means of gauging the thermoelectric performance of germanene under the presence of bi-axial strain. Moreover, the study extends its analysis to doped germanene with bi-axial strain, employing the rigid band approximation to investigate its thermoelectric performance. The research extensively estimates the transport properties for both intrinsic and extrinsic germanene, utilizing the hybrid functional HSE06. Additionally, the lattice thermal conductivity of germanene is estimated and compared for the strained and unstrained conditions. The analysis of thermal conductivity involves considering the effects of group velocity and phonon scattering time, providing insights into the nature of heat transport in strained germanene systems. Overall, this comprehensive study contributes to a deeper understanding of the thermoelectric properties of germanene under strain and lays the foundations for potential applications in electronic and thermal devices.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures