Impact of strain and electron–phonon coupling on thermoelectric performance of Germanene

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Neelesh Gupta , Anup Shrivastava , Jost Adam
{"title":"Impact of strain and electron–phonon coupling on thermoelectric performance of Germanene","authors":"Neelesh Gupta ,&nbsp;Anup Shrivastava ,&nbsp;Jost Adam","doi":"10.1016/j.physe.2024.116150","DOIUrl":null,"url":null,"abstract":"<div><div>This manuscript describes the thermoelectric properties of monolayer germanene under the influence of biaxial strain using the combined approach of ab initio and semi-classical Boltzmann transport theory. To achieve excellent precision in the estimation of the thermoelectric behavior of strained germanene, the research delves into the temperature-dependent scattering time, particularly emphasizing the electron–phonon coupling effect. Incorporating both optical and acoustic phonons is always crucial and key for precisely estimating the scattering time, surpassing the limitations of the deformation potential approximation method. By examining the impact of strain on monolayer germanene and accounting for its scattering time, this approach provides a more practical means of gauging the thermoelectric performance of germanene under the presence of bi-axial strain. Moreover, the study extends its analysis to doped germanene with bi-axial strain, employing the rigid band approximation to investigate its thermoelectric performance. The research extensively estimates the transport properties for both intrinsic and extrinsic germanene, utilizing the hybrid functional HSE06. Additionally, the lattice thermal conductivity of germanene is estimated and compared for the strained and unstrained conditions. The analysis of thermal conductivity involves considering the effects of group velocity and phonon scattering time, providing insights into the nature of heat transport in strained germanene systems. Overall, this comprehensive study contributes to a deeper understanding of the thermoelectric properties of germanene under strain and lays the foundations for potential applications in electronic and thermal devices.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"167 ","pages":"Article 116150"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724002546","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript describes the thermoelectric properties of monolayer germanene under the influence of biaxial strain using the combined approach of ab initio and semi-classical Boltzmann transport theory. To achieve excellent precision in the estimation of the thermoelectric behavior of strained germanene, the research delves into the temperature-dependent scattering time, particularly emphasizing the electron–phonon coupling effect. Incorporating both optical and acoustic phonons is always crucial and key for precisely estimating the scattering time, surpassing the limitations of the deformation potential approximation method. By examining the impact of strain on monolayer germanene and accounting for its scattering time, this approach provides a more practical means of gauging the thermoelectric performance of germanene under the presence of bi-axial strain. Moreover, the study extends its analysis to doped germanene with bi-axial strain, employing the rigid band approximation to investigate its thermoelectric performance. The research extensively estimates the transport properties for both intrinsic and extrinsic germanene, utilizing the hybrid functional HSE06. Additionally, the lattice thermal conductivity of germanene is estimated and compared for the strained and unstrained conditions. The analysis of thermal conductivity involves considering the effects of group velocity and phonon scattering time, providing insights into the nature of heat transport in strained germanene systems. Overall, this comprehensive study contributes to a deeper understanding of the thermoelectric properties of germanene under strain and lays the foundations for potential applications in electronic and thermal devices.
应变和电子-声子耦合对锗烯热电性能的影响
本文采用从头算和半经典玻尔兹曼输运理论相结合的方法,研究了双轴应变作用下单层锗烯的热电性质。为了获得应变锗烯热电行为的高精度估计,本研究深入研究了温度依赖的散射时间,特别强调了电子-声子耦合效应。结合光声子和声子是精确估计散射时间的关键和关键,突破了变形势近似法的局限性。通过考察应变对单层锗烯的影响并考虑其散射时间,该方法为测量锗烯在双轴应变下的热电性能提供了一种更实用的方法。此外,该研究将其分析扩展到具有双轴应变的掺杂锗烯,采用刚性带近似研究其热电性能。本研究利用杂化官能团HSE06广泛估计了内源性和外源性锗烯的输运性质。此外,估计和比较了锗烯在应变和非应变条件下的晶格导热系数。热导率的分析包括考虑群速度和声子散射时间的影响,提供了对应变锗烯系统热传输性质的见解。总的来说,这项全面的研究有助于更深入地了解锗烯在应变下的热电性质,为锗烯在电子和热器件中的潜在应用奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信