SIRT5 inhibits glycolysis and nasal type extranodal NK/T cell lymphoma cell proliferation by catalyzing the desuccinylation of glucose-6-phosphate isomerase

IF 5 2区 医学 Q2 Medicine
Tiansheng Wang , Guolin Tan , Ming Jiang , Guohui Liu , Wei Li , Xiang Qing
{"title":"SIRT5 inhibits glycolysis and nasal type extranodal NK/T cell lymphoma cell proliferation by catalyzing the desuccinylation of glucose-6-phosphate isomerase","authors":"Tiansheng Wang ,&nbsp;Guolin Tan ,&nbsp;Ming Jiang ,&nbsp;Guohui Liu ,&nbsp;Wei Li ,&nbsp;Xiang Qing","doi":"10.1016/j.tranon.2024.102215","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Extranodal natural killer/T-cell lymphoma, nasal type (ENKTL) is a malignant tumor harboring a poor prognosis and unsatisfactory treatment outcomes. This study was performed to explore the pathogenesis and exact etiology of ENKTL. <strong>Methods</strong> Bioinformatic analysis was conducted to investigate the expression of SIRT5 and glucose-6-phosphate isomerase (GPI), as well their correlation with ENKTL overall survival. Cell proliferation ability and cell apoptosis were determined by CCK8, soft-agar colony formation and Tunel assays. Pyruvic acid and lactate production, GPI activity and F6P levels were detected to indicate glycolysis process. Succinylation modification in GPI protein was quantified by 4D label-free succinylation modification quantitative proteome. ENKTL mouse model was established by the injection of SNK6 cells.</div></div><div><h3>Results</h3><div>SIRT5 suppressed the NKTL cell proliferation through the desuccinylation effect, while it was down-regulated in the ENKTL. SIRT5 catalyzed the desuccinylation of glycolytic enzyme GPI in ENKTL cells, which accelerated GPI protein degradation through the autophagy-lysosome system. SIRT5 inhibited glycolysis via mediating the desuccinylation of GPI, thereby suppressing ENKTL cell proliferation. The antitumor role of SIRT5 was also certified in ENKTL mouse model by targeting GPI.</div></div><div><h3>Conclusion</h3><div>SIRT5 inhibits glycolysis via catalyzed the desuccinylation of glycolytic enzyme GPI, thereby repressing ENKTL cells proliferation and tumor growth. As SIRT5 serves as a tumor suppressor in ENKTL, it may be a promising molecular target in therapy strategy.</div></div>","PeriodicalId":48975,"journal":{"name":"Translational Oncology","volume":"51 ","pages":"Article 102215"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1936523324003425","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Extranodal natural killer/T-cell lymphoma, nasal type (ENKTL) is a malignant tumor harboring a poor prognosis and unsatisfactory treatment outcomes. This study was performed to explore the pathogenesis and exact etiology of ENKTL. Methods Bioinformatic analysis was conducted to investigate the expression of SIRT5 and glucose-6-phosphate isomerase (GPI), as well their correlation with ENKTL overall survival. Cell proliferation ability and cell apoptosis were determined by CCK8, soft-agar colony formation and Tunel assays. Pyruvic acid and lactate production, GPI activity and F6P levels were detected to indicate glycolysis process. Succinylation modification in GPI protein was quantified by 4D label-free succinylation modification quantitative proteome. ENKTL mouse model was established by the injection of SNK6 cells.

Results

SIRT5 suppressed the NKTL cell proliferation through the desuccinylation effect, while it was down-regulated in the ENKTL. SIRT5 catalyzed the desuccinylation of glycolytic enzyme GPI in ENKTL cells, which accelerated GPI protein degradation through the autophagy-lysosome system. SIRT5 inhibited glycolysis via mediating the desuccinylation of GPI, thereby suppressing ENKTL cell proliferation. The antitumor role of SIRT5 was also certified in ENKTL mouse model by targeting GPI.

Conclusion

SIRT5 inhibits glycolysis via catalyzed the desuccinylation of glycolytic enzyme GPI, thereby repressing ENKTL cells proliferation and tumor growth. As SIRT5 serves as a tumor suppressor in ENKTL, it may be a promising molecular target in therapy strategy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.40
自引率
2.00%
发文量
314
审稿时长
54 days
期刊介绍: Translational Oncology publishes the results of novel research investigations which bridge the laboratory and clinical settings including risk assessment, cellular and molecular characterization, prevention, detection, diagnosis and treatment of human cancers with the overall goal of improving the clinical care of oncology patients. Translational Oncology will publish laboratory studies of novel therapeutic interventions as well as clinical trials which evaluate new treatment paradigms for cancer. Peer reviewed manuscript types include Original Reports, Reviews and Editorials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信