Existence of traveling wave solutions in continuous optimal velocity models

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Kota Ikeda , Toru Kan , Toshiyuki Ogawa
{"title":"Existence of traveling wave solutions in continuous optimal velocity models","authors":"Kota Ikeda ,&nbsp;Toru Kan ,&nbsp;Toshiyuki Ogawa","doi":"10.1016/j.physd.2024.134430","DOIUrl":null,"url":null,"abstract":"<div><div>In traffic flow theory, hydrodynamic models, a subset of macroscopic models, can be derived from microscopic-level car-following models. Self-organized wave propagation, which characterizes congestion, has been replicated in these macroscopic models. However, the existence of wave propagation has only been validated using numerical technique or formal analyses and has not yet been rigorously proven. Therefore, analytical approaches are necessary to ensure their validity rigorously. This study investigates the properties of solutions corresponding to congestion with sparse and dense waves. Specifically, we demonstrate the existence of traveling back/front, traveling pulse, and periodic traveling wave solutions in macroscopic models. All theorems are proven using phase-plane analysis without local bifurcation theory. The key to the proofs is the monotonicity of solution trajectories concerning implicit parameters that naturally appear in the models. We also examine the global bifurcation structure for heteroclinic, homoclinic, and periodic orbits, which correspond to traveling back/front, traveling pulse, and periodic traveling wave solutions, via the numerical continuation package HomCont/AUTO.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"471 ","pages":"Article 134430"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003804","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In traffic flow theory, hydrodynamic models, a subset of macroscopic models, can be derived from microscopic-level car-following models. Self-organized wave propagation, which characterizes congestion, has been replicated in these macroscopic models. However, the existence of wave propagation has only been validated using numerical technique or formal analyses and has not yet been rigorously proven. Therefore, analytical approaches are necessary to ensure their validity rigorously. This study investigates the properties of solutions corresponding to congestion with sparse and dense waves. Specifically, we demonstrate the existence of traveling back/front, traveling pulse, and periodic traveling wave solutions in macroscopic models. All theorems are proven using phase-plane analysis without local bifurcation theory. The key to the proofs is the monotonicity of solution trajectories concerning implicit parameters that naturally appear in the models. We also examine the global bifurcation structure for heteroclinic, homoclinic, and periodic orbits, which correspond to traveling back/front, traveling pulse, and periodic traveling wave solutions, via the numerical continuation package HomCont/AUTO.
连续最优速度模型行波解的存在性
在交通流理论中,水动力模型是宏观模型的一个子集,可以从微观层面的车辆跟随模型推导出来。自组织波传播是拥堵的特征,已经在这些宏观模型中得到了复制。然而,波浪传播的存在仅通过数值技术或形式分析得到验证,尚未得到严格证明。因此,有必要采用分析方法来严格保证其有效性。研究了稀疏波和稠密波的拥塞问题解的性质。具体来说,我们证明了在宏观模型中存在前后行、脉冲行和周期行波解。所有的定理都是用相平面分析证明的,没有局部分岔理论。证明的关键是关于模型中自然出现的隐式参数的解轨迹的单调性。我们还利用数值延拓包HomCont/AUTO分析了异斜轨道、同斜轨道和周期轨道的整体分岔结构,这些分岔结构对应于前后行、脉冲行和周期行波解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信