{"title":"The existence of invariant tori of reversible systems with Liouvillean frequency and its applications","authors":"Ru Qu, DongFeng Zhang","doi":"10.1016/j.physd.2024.134447","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the quasi-periodically forced reversible system: <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mi>ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mover><mrow><mi>u</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mtext>i</mtext><mi>A</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mi>u</mi><mo>+</mo><mtext>i</mtext><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mover><mrow><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mo>−</mo><mtext>i</mtext><mi>A</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>−</mo><mtext>i</mtext><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span> where the frequency vector <span><math><mrow><mi>ω</mi><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mi>α</mi></math></span> being an irrational number, and <span><math><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>l</mi></mrow></msup><mo>×</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>l</mi></mrow></msup></mrow></math></span>. The matrix <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> is an <span><math><mrow><mi>l</mi><mo>×</mo><mi>l</mi></mrow></math></span> constant matrix that depends only on the parameter <span><math><mi>ξ</mi></math></span>, and <span><math><mi>f</mi></math></span> represents a small perturbation that also depends on <span><math><mi>ξ</mi></math></span> as a parameter. Based on the CD bridge method and the improved KAM iteration with parameters, it is proved that for most of the parameter <span><math><mi>ξ</mi></math></span>, the reversible system can be reduced to the form: <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mi>ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mover><mrow><mi>u</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mtext>i</mtext><mi>A</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mi>u</mi><mo>+</mo><mtext>i</mtext><msub><mrow><mi>V</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mi>u</mi><mo>+</mo><mtext>i</mtext><msub><mrow><mi>f</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mover><mrow><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mo>−</mo><mtext>i</mtext><mi>A</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>−</mo><mtext>i</mtext><msub><mrow><mi>V</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>−</mo><mtext>i</mtext><msub><mrow><mi>f</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span> where <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> is an analytic function, and <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> represents the higher-order term. This indicates the existence of lower-dimensional invariant tori with Liouvillean frequency in the reversible system investigated. The result is further applied to reversible harmonic oscillators, and the existence of response solutions is proved.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"471 ","pages":"Article 134447"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892400397X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the quasi-periodically forced reversible system: where the frequency vector with being an irrational number, and . The matrix is an constant matrix that depends only on the parameter , and represents a small perturbation that also depends on as a parameter. Based on the CD bridge method and the improved KAM iteration with parameters, it is proved that for most of the parameter , the reversible system can be reduced to the form: where is an analytic function, and represents the higher-order term. This indicates the existence of lower-dimensional invariant tori with Liouvillean frequency in the reversible system investigated. The result is further applied to reversible harmonic oscillators, and the existence of response solutions is proved.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.