The existence of invariant tori of reversible systems with Liouvillean frequency and its applications

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Ru Qu, DongFeng Zhang
{"title":"The existence of invariant tori of reversible systems with Liouvillean frequency and its applications","authors":"Ru Qu,&nbsp;DongFeng Zhang","doi":"10.1016/j.physd.2024.134447","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on the quasi-periodically forced reversible system: <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mi>ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mover><mrow><mi>u</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mtext>i</mtext><mi>A</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mi>u</mi><mo>+</mo><mtext>i</mtext><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mover><mrow><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mo>−</mo><mtext>i</mtext><mi>A</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>−</mo><mtext>i</mtext><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span> where the frequency vector <span><math><mrow><mi>ω</mi><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>,</mo><mi>α</mi><mo>)</mo></mrow></mrow></math></span> with <span><math><mi>α</mi></math></span> being an irrational number, and <span><math><mrow><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>T</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>l</mi></mrow></msup><mo>×</mo><msup><mrow><mi>ℂ</mi></mrow><mrow><mi>l</mi></mrow></msup></mrow></math></span>. The matrix <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> is an <span><math><mrow><mi>l</mi><mo>×</mo><mi>l</mi></mrow></math></span> constant matrix that depends only on the parameter <span><math><mi>ξ</mi></math></span>, and <span><math><mi>f</mi></math></span> represents a small perturbation that also depends on <span><math><mi>ξ</mi></math></span> as a parameter. Based on the CD bridge method and the improved KAM iteration with parameters, it is proved that for most of the parameter <span><math><mi>ξ</mi></math></span>, the reversible system can be reduced to the form: <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mi>ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mover><mrow><mi>u</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mtext>i</mtext><mi>A</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mi>u</mi><mo>+</mo><mtext>i</mtext><msub><mrow><mi>V</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mi>u</mi><mo>+</mo><mtext>i</mtext><msub><mrow><mi>f</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr><mtr><mtd><mover><mrow><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mo>−</mo><mtext>i</mtext><mi>A</mi><mrow><mo>(</mo><mi>ξ</mi><mo>)</mo></mrow><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>−</mo><mtext>i</mtext><msub><mrow><mi>V</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>−</mo><mtext>i</mtext><msub><mrow><mi>f</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span> where <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> is an analytic function, and <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mo>∗</mo></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mover><mrow><mi>u</mi></mrow><mo>¯</mo></mover><mo>,</mo><mi>ξ</mi><mo>)</mo></mrow></mrow></math></span> represents the higher-order term. This indicates the existence of lower-dimensional invariant tori with Liouvillean frequency in the reversible system investigated. The result is further applied to reversible harmonic oscillators, and the existence of response solutions is proved.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"471 ","pages":"Article 134447"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892400397X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the quasi-periodically forced reversible system: ẋ=ω,u̇=iA(ξ)u+if(x,u,u¯,ξ),u¯̇=iA(ξ)u¯if(x,u,u¯,ξ), where the frequency vector ω=(1,α) with α being an irrational number, and (x,u,u¯)T2×l×l. The matrix A(ξ) is an l×l constant matrix that depends only on the parameter ξ, and f represents a small perturbation that also depends on ξ as a parameter. Based on the CD bridge method and the improved KAM iteration with parameters, it is proved that for most of the parameter ξ, the reversible system can be reduced to the form: ẋ=ω,u̇=iA(ξ)u+iV(x,ξ)u+if(x,u,u¯,ξ),u¯̇=iA(ξ)u¯iV(x,ξ)u¯if(x,u,u¯,ξ), where V(x,ξ) is an analytic function, and f(x,u,u¯,ξ) represents the higher-order term. This indicates the existence of lower-dimensional invariant tori with Liouvillean frequency in the reversible system investigated. The result is further applied to reversible harmonic oscillators, and the existence of response solutions is proved.
具有刘维尔频率的可逆系统不变环面的存在性及其应用
研究拟周期强制可逆系统: =ω,u¯=iA(ξ)u+if(x,u,u¯,ξ),u¯=−iA(ξ)u¯−if(x,u,u¯,ξ),其中频率向量ω=(1,α),且α为无理数,且(x,u,u¯)∈t2x lx l。矩阵A(ξ)是一个l×l常数矩阵,它只依赖于参数ξ,而f表示一个小的扰动,它也依赖于作为参数的ξ。基于CD桥法和改进的带参数的KAM迭代,证明了对于大多数参数ξ,可逆系统可以简化为: =ω,u²=iA(ξ)u+iV∗(x,ξ)u+if∗(x,u,u¯,ξ),u¯²=−iA(ξ)u¯−iV∗(x, u¯,ξ),其中V∗(x,ξ)是解析函数,f∗(x,u,u¯,ξ)表示高阶项。这表明在所研究的可逆系统中存在具有刘维尔频率的低维不变环面。将结果进一步应用于可逆谐振振荡器,并证明了响应解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信