Numerical analysis of a 1/2-equation model of turbulence

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Wei-Wei Han , Rui Fang , William Layton
{"title":"Numerical analysis of a 1/2-equation model of turbulence","authors":"Wei-Wei Han ,&nbsp;Rui Fang ,&nbsp;William Layton","doi":"10.1016/j.physd.2024.134428","DOIUrl":null,"url":null,"abstract":"<div><div>The recent 1/2-equation model of turbulence is a simplification of the standard Kolmogorov–Prandtl 1-equation URANS model. In tests, the 1/2-equation model produced comparable velocity statistics to a full 1-equation model with lower computational complexity. There is little progress in the numerical analysis of URANS models due to the difficulties in treating the coupling between equations and the nonlinearities in highest-order terms. The numerical analysis herein on the 1/2-equation model has independent interest and is also a first numerical analysis step to address the couplings and nonlinearities in a full 1-equation model. This report develops a complete numerical analysis of the 1/2-equation model. Stability, convergence, and error estimates are proven for a semi-discrete and fully discrete approximation. Finally, numerical tests are conducted to validate the predictions of the convergence theory.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"471 ","pages":"Article 134428"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924003786","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The recent 1/2-equation model of turbulence is a simplification of the standard Kolmogorov–Prandtl 1-equation URANS model. In tests, the 1/2-equation model produced comparable velocity statistics to a full 1-equation model with lower computational complexity. There is little progress in the numerical analysis of URANS models due to the difficulties in treating the coupling between equations and the nonlinearities in highest-order terms. The numerical analysis herein on the 1/2-equation model has independent interest and is also a first numerical analysis step to address the couplings and nonlinearities in a full 1-equation model. This report develops a complete numerical analysis of the 1/2-equation model. Stability, convergence, and error estimates are proven for a semi-discrete and fully discrete approximation. Finally, numerical tests are conducted to validate the predictions of the convergence theory.
湍流1/2方程模型的数值分析
最近的湍流1/2方程模型是对标准Kolmogorov-Prandtl 1-方程URANS模型的简化。在测试中,1/2方程模型产生的速度统计数据与计算复杂度较低的完整1方程模型相当。由于难以处理方程之间的耦合和最高阶项的非线性,URANS模型的数值分析进展甚微。本文对1/2方程模型的数值分析具有独立的意义,也是解决完整1-方程模型中的耦合和非线性问题的第一个数值分析步骤。本文对1/2方程模型进行了完整的数值分析。证明了半离散和全离散近似的稳定性、收敛性和误差估计。最后,通过数值试验验证了收敛理论的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信