Davide Iafrate , Andrea Brandonisio , Robert Hinz , Michèle Lavagna
{"title":"Propulsive landing of launchers’ first stages with Deep Reinforcement Learning","authors":"Davide Iafrate , Andrea Brandonisio , Robert Hinz , Michèle Lavagna","doi":"10.1016/j.actaastro.2024.11.028","DOIUrl":null,"url":null,"abstract":"<div><div>The planetary landing problem is gaining relevance in the space sector, spanning a wide range of applications from unmanned probes landing on other planetary bodies to reusable first and second stages of launcher vehicles. In the existing methodology there is a lack of flexibility in handling complex non-linear dynamics, in particular in the case of non-convexifiable constraints. It is therefore crucial to assess the performance of novel techniques and their advantages and disadvantages. The purpose of this work is the development of an integrated 6-DOF guidance and control approach based on reinforcement learning of deep neural network policies for fuel-optimal planetary landing control, specifically with application to a launcher first-stage terminal landing, and the assessment of its performance and robustness. 3-DOF and 6-DOF simulators are developed and encapsulated in MDP-like (Markov Decision Process) industry-standard compatible environments. Particular care is given in thoroughly shaping reward functions capable of achieving the landing both successfully and in a fuel-optimal manner. A cloud pipeline for effective training of an agent using a PPO reinforcement learning algorithm to successfully achieve the landing goal is developed.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"227 ","pages":"Pages 40-56"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524006751","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
The planetary landing problem is gaining relevance in the space sector, spanning a wide range of applications from unmanned probes landing on other planetary bodies to reusable first and second stages of launcher vehicles. In the existing methodology there is a lack of flexibility in handling complex non-linear dynamics, in particular in the case of non-convexifiable constraints. It is therefore crucial to assess the performance of novel techniques and their advantages and disadvantages. The purpose of this work is the development of an integrated 6-DOF guidance and control approach based on reinforcement learning of deep neural network policies for fuel-optimal planetary landing control, specifically with application to a launcher first-stage terminal landing, and the assessment of its performance and robustness. 3-DOF and 6-DOF simulators are developed and encapsulated in MDP-like (Markov Decision Process) industry-standard compatible environments. Particular care is given in thoroughly shaping reward functions capable of achieving the landing both successfully and in a fuel-optimal manner. A cloud pipeline for effective training of an agent using a PPO reinforcement learning algorithm to successfully achieve the landing goal is developed.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.