Yanlong Huang , Wenxin Tai , Fan Zhou , Qiang Gao , Ting Zhong , Kunpeng Zhang
{"title":"Extracting key insights from earnings call transcript via information-theoretic contrastive learning","authors":"Yanlong Huang , Wenxin Tai , Fan Zhou , Qiang Gao , Ting Zhong , Kunpeng Zhang","doi":"10.1016/j.ipm.2024.103998","DOIUrl":null,"url":null,"abstract":"<div><div>Earnings conference calls provide critical insights into a company’s financial health, future outlook, and strategic direction. Traditionally, analysts manually analyze these lengthy transcripts to extract key information, a process that is both time-consuming and prone to bias and error. To address this, text mining tools, particularly extractive summarization, are increasingly being used to automatically extract key insights, aiming to standardize the analysis process and improve efficiency. Extractive summarization automates the selection of the most informative sentences, offering a promising solution for transcript analysis. However, existing extractive summarization techniques face several challenges, such as the lack of labeled training data, difficulties in incorporating domain-specific knowledge, and inefficiencies in handling large-scale datasets. In this work, we introduce ECT-SKIE, an information-theoretic, self-supervised approach for extracting key insights from earnings call transcripts. We leverage variational information bottleneck theory to extract insights in parallel, significantly accelerating the process. In addition, we propose a structure-aware contrastive learning strategy that enables model training without the need for labeled data. We further develop a novel container-based key sentence extractor to alleviate sentence redundancy. Using a large-scale dataset of U.S. market earnings call transcripts, we evaluate our method against nine representative baselines across three downstream tasks. Experimental results show that ECT-SKIE can consistently extract high-quality key sentences. The code is publicly available at: <span><span>https://github.com/MongoTap/ECT-SKIE</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 3","pages":"Article 103998"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324003571","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Earnings conference calls provide critical insights into a company’s financial health, future outlook, and strategic direction. Traditionally, analysts manually analyze these lengthy transcripts to extract key information, a process that is both time-consuming and prone to bias and error. To address this, text mining tools, particularly extractive summarization, are increasingly being used to automatically extract key insights, aiming to standardize the analysis process and improve efficiency. Extractive summarization automates the selection of the most informative sentences, offering a promising solution for transcript analysis. However, existing extractive summarization techniques face several challenges, such as the lack of labeled training data, difficulties in incorporating domain-specific knowledge, and inefficiencies in handling large-scale datasets. In this work, we introduce ECT-SKIE, an information-theoretic, self-supervised approach for extracting key insights from earnings call transcripts. We leverage variational information bottleneck theory to extract insights in parallel, significantly accelerating the process. In addition, we propose a structure-aware contrastive learning strategy that enables model training without the need for labeled data. We further develop a novel container-based key sentence extractor to alleviate sentence redundancy. Using a large-scale dataset of U.S. market earnings call transcripts, we evaluate our method against nine representative baselines across three downstream tasks. Experimental results show that ECT-SKIE can consistently extract high-quality key sentences. The code is publicly available at: https://github.com/MongoTap/ECT-SKIE.
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.