NCCT-to-CECT synthesis with contrast-enhanced knowledge and anatomical perception for multi-organ segmentation in non-contrast CT images

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Liming Zhong , Ruolin Xiao , Hai Shu , Kaiyi Zheng , Xinming Li , Yuankui Wu , Jianhua Ma , Qianjin Feng , Wei Yang
{"title":"NCCT-to-CECT synthesis with contrast-enhanced knowledge and anatomical perception for multi-organ segmentation in non-contrast CT images","authors":"Liming Zhong ,&nbsp;Ruolin Xiao ,&nbsp;Hai Shu ,&nbsp;Kaiyi Zheng ,&nbsp;Xinming Li ,&nbsp;Yuankui Wu ,&nbsp;Jianhua Ma ,&nbsp;Qianjin Feng ,&nbsp;Wei Yang","doi":"10.1016/j.media.2024.103397","DOIUrl":null,"url":null,"abstract":"<div><div>Contrast-enhanced computed tomography (CECT) is constantly used for delineating organs-at-risk (OARs) in radiation therapy planning. The delineated OARs are needed to transfer from CECT to non-contrast CT (NCCT) for dose calculation. Yet, the use of iodinated contrast agents (CA) in CECT and the dose calculation errors caused by the spatial misalignment between NCCT and CECT images pose risks of adverse side effects. A promising solution is synthesizing CECT images from NCCT scans, which can improve the visibility of organs and abnormalities for more effective multi-organ segmentation in NCCT images. However, existing methods neglect the difference between tissues induced by CA and lack the ability to synthesize the details of organ edges and blood vessels. To address these issues, we propose a contrast-enhanced knowledge and anatomical perception network (CKAP-Net) for NCCT-to-CECT synthesis. CKAP-Net leverages a contrast-enhanced knowledge learning network to capture both similarities and dissimilarities in domain characteristics attributable to CA. Specifically, a CA-based perceptual loss function is introduced to enhance the synthesis of CA details. Furthermore, we design a multi-scale anatomical perception transformer that utilizes multi-scale anatomical information from NCCT images, enabling the precise synthesis of tissue details. Our CKAP-Net is evaluated on a multi-center abdominal NCCT-CECT dataset, a head an neck NCCT-CECT dataset, and an NCMRI-CEMRI dataset. It achieves a MAE of 25.96 ± 2.64, a SSIM of 0.855 ± 0.017, and a PSNR of 32.60 ± 0.02 for CECT synthesis, and a DSC of 81.21 ± 4.44 for segmentation on the internal dataset. Extensive experiments demonstrate that CKAP-Net outperforms state-of-the-art CA synthesis methods and has better generalizability across different datasets.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"100 ","pages":"Article 103397"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841524003220","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Contrast-enhanced computed tomography (CECT) is constantly used for delineating organs-at-risk (OARs) in radiation therapy planning. The delineated OARs are needed to transfer from CECT to non-contrast CT (NCCT) for dose calculation. Yet, the use of iodinated contrast agents (CA) in CECT and the dose calculation errors caused by the spatial misalignment between NCCT and CECT images pose risks of adverse side effects. A promising solution is synthesizing CECT images from NCCT scans, which can improve the visibility of organs and abnormalities for more effective multi-organ segmentation in NCCT images. However, existing methods neglect the difference between tissues induced by CA and lack the ability to synthesize the details of organ edges and blood vessels. To address these issues, we propose a contrast-enhanced knowledge and anatomical perception network (CKAP-Net) for NCCT-to-CECT synthesis. CKAP-Net leverages a contrast-enhanced knowledge learning network to capture both similarities and dissimilarities in domain characteristics attributable to CA. Specifically, a CA-based perceptual loss function is introduced to enhance the synthesis of CA details. Furthermore, we design a multi-scale anatomical perception transformer that utilizes multi-scale anatomical information from NCCT images, enabling the precise synthesis of tissue details. Our CKAP-Net is evaluated on a multi-center abdominal NCCT-CECT dataset, a head an neck NCCT-CECT dataset, and an NCMRI-CEMRI dataset. It achieves a MAE of 25.96 ± 2.64, a SSIM of 0.855 ± 0.017, and a PSNR of 32.60 ± 0.02 for CECT synthesis, and a DSC of 81.21 ± 4.44 for segmentation on the internal dataset. Extensive experiments demonstrate that CKAP-Net outperforms state-of-the-art CA synthesis methods and has better generalizability across different datasets.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信