Harnessing 12-lead ECG and MRI data to personalise repolarisation profiles in cardiac digital twin models for enhanced virtual drug testing

IF 10.7 1区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Julia Camps , Zhinuo Jenny Wang , Ruben Doste , Lucas Arantes Berg , Maxx Holmes , Brodie Lawson , Jakub Tomek , Kevin Burrage , Alfonso Bueno-Orovio , Blanca Rodriguez
{"title":"Harnessing 12-lead ECG and MRI data to personalise repolarisation profiles in cardiac digital twin models for enhanced virtual drug testing","authors":"Julia Camps ,&nbsp;Zhinuo Jenny Wang ,&nbsp;Ruben Doste ,&nbsp;Lucas Arantes Berg ,&nbsp;Maxx Holmes ,&nbsp;Brodie Lawson ,&nbsp;Jakub Tomek ,&nbsp;Kevin Burrage ,&nbsp;Alfonso Bueno-Orovio ,&nbsp;Blanca Rodriguez","doi":"10.1016/j.media.2024.103361","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiac digital twins are computational tools capturing key functional and anatomical characteristics of patient hearts for investigating disease phenotypes and predicting responses to therapy. When paired with large-scale computational resources and large clinical datasets, digital twin technology can enable virtual clinical trials on virtual cohorts to fast-track therapy development. Here, we present an open-source automated pipeline for personalising ventricular electrophysiological function based on routinely acquired magnetic resonance imaging (MRI) data and the standard 12-lead electrocardiogram (ECG).</div><div>Using MRI-based anatomical models, a sequential Monte-Carlo approximate Bayesian computational inference method is extended to infer electrical activation and repolarisation characteristics from the ECG. Fast simulations are conducted with a reaction-Eikonal model, including the Purkinje network and biophysically-detailed subcellular ionic current dynamics for repolarisation. For each patient, parameter uncertainty is represented by inferring an envelope of plausible ventricular models rather than a single one, which means that parameter uncertainty can be propagated to therapy evaluation. Furthermore, we have developed techniques for translating from reaction-Eikonal to monodomain simulations, which allows more realistic simulations of cardiac electrophysiology. The pipeline is demonstrated in three healthy subjects, where our inferred pseudo-diffusion reaction-Eikonal models reproduced the patient's ECG with a median Pearson's correlation coefficient of 0.9, and then translated to monodomain simulations with a median correlation coefficient of 0.84 across all subjects. We then demonstrate our digital twins for virtual evaluation of Dofetilide with uncertainty quantification. These evaluations using our cardiac digital twins reproduced dose-dependent QTc and T peak to T end prolongations that are in keeping with large population drug response data.</div><div>The methodologies for cardiac digital twinning presented here are a step towards personalised virtual therapy testing and can be scaled to generate virtual populations for clinical trials to fast-track therapy evaluation. The tools developed for this paper are open-source, documented, and made publicly available.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"100 ","pages":"Article 103361"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136184152400286X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac digital twins are computational tools capturing key functional and anatomical characteristics of patient hearts for investigating disease phenotypes and predicting responses to therapy. When paired with large-scale computational resources and large clinical datasets, digital twin technology can enable virtual clinical trials on virtual cohorts to fast-track therapy development. Here, we present an open-source automated pipeline for personalising ventricular electrophysiological function based on routinely acquired magnetic resonance imaging (MRI) data and the standard 12-lead electrocardiogram (ECG).
Using MRI-based anatomical models, a sequential Monte-Carlo approximate Bayesian computational inference method is extended to infer electrical activation and repolarisation characteristics from the ECG. Fast simulations are conducted with a reaction-Eikonal model, including the Purkinje network and biophysically-detailed subcellular ionic current dynamics for repolarisation. For each patient, parameter uncertainty is represented by inferring an envelope of plausible ventricular models rather than a single one, which means that parameter uncertainty can be propagated to therapy evaluation. Furthermore, we have developed techniques for translating from reaction-Eikonal to monodomain simulations, which allows more realistic simulations of cardiac electrophysiology. The pipeline is demonstrated in three healthy subjects, where our inferred pseudo-diffusion reaction-Eikonal models reproduced the patient's ECG with a median Pearson's correlation coefficient of 0.9, and then translated to monodomain simulations with a median correlation coefficient of 0.84 across all subjects. We then demonstrate our digital twins for virtual evaluation of Dofetilide with uncertainty quantification. These evaluations using our cardiac digital twins reproduced dose-dependent QTc and T peak to T end prolongations that are in keeping with large population drug response data.
The methodologies for cardiac digital twinning presented here are a step towards personalised virtual therapy testing and can be scaled to generate virtual populations for clinical trials to fast-track therapy evaluation. The tools developed for this paper are open-source, documented, and made publicly available.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical image analysis
Medical image analysis 工程技术-工程:生物医学
CiteScore
22.10
自引率
6.40%
发文量
309
审稿时长
6.6 months
期刊介绍: Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信