Xue Miao, Lingyu Dong, Zhaoshun Wang, Lei Zhang, Jialei Wang, Shihe Wang, Yunhan Zhang, Hongzhen Zhang, Fangxiao Zhang, Changjun Hu
{"title":"A novel approach for full-core mesh generation to enable high-fidelity thermal-hydraulic simulation of nuclear reactor engineering","authors":"Xue Miao, Lingyu Dong, Zhaoshun Wang, Lei Zhang, Jialei Wang, Shihe Wang, Yunhan Zhang, Hongzhen Zhang, Fangxiao Zhang, Changjun Hu","doi":"10.1016/j.nucengdes.2024.113684","DOIUrl":null,"url":null,"abstract":"<div><div>Thermal-hydraulic analysis is crucial in reactor engineering. High-fidelity simulations, utilizing advanced computing techniques and supercomputing resources, are highly regarded. High-quality fluid mesh models are essential for complex reactors’ high-fidelity simulations. Using existing tools for model construction has limitations in quality control, performance, user dependency, file generation, and visualization. Estimating time and memory consumption for full-core meshing is also not possible. A R-IMG approach is designed, it effortlessly creates mesh models for intricate flow field, demonstrating exceptional modeling performance, robustness, scalability, and reduced user dependency, while its flexible file manner effectively addresses challenges in generating and visualizing large-scale mesh files. Extensive testing validates R-IMG’s effectiveness and reliability in meshing the reactor’s flow field. It efficiently generates high-quality meshes for the complex flow field in the entire fuel region of CEFR, completing the process within 7 h and 10GB of memory. The resulting model has around 14 billion cells and an average quality of 0.7. R-IMG achieves a maximum parallel scale of 3200 processes for file generation, with approximately 90% parallel efficiency. These results demonstrate that R-IMG outperforms existing tools in core meshing and shows significant potential for full-core meshing. Successful visualization of models and benchmark tests provide evidence for models’ correctness.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"431 ","pages":"Article 113684"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324007842","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal-hydraulic analysis is crucial in reactor engineering. High-fidelity simulations, utilizing advanced computing techniques and supercomputing resources, are highly regarded. High-quality fluid mesh models are essential for complex reactors’ high-fidelity simulations. Using existing tools for model construction has limitations in quality control, performance, user dependency, file generation, and visualization. Estimating time and memory consumption for full-core meshing is also not possible. A R-IMG approach is designed, it effortlessly creates mesh models for intricate flow field, demonstrating exceptional modeling performance, robustness, scalability, and reduced user dependency, while its flexible file manner effectively addresses challenges in generating and visualizing large-scale mesh files. Extensive testing validates R-IMG’s effectiveness and reliability in meshing the reactor’s flow field. It efficiently generates high-quality meshes for the complex flow field in the entire fuel region of CEFR, completing the process within 7 h and 10GB of memory. The resulting model has around 14 billion cells and an average quality of 0.7. R-IMG achieves a maximum parallel scale of 3200 processes for file generation, with approximately 90% parallel efficiency. These results demonstrate that R-IMG outperforms existing tools in core meshing and shows significant potential for full-core meshing. Successful visualization of models and benchmark tests provide evidence for models’ correctness.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.