Alex J. Elliott , Aydin Nakhaeezadeh Gutierrez , Leonard Felicetti , Luca Zanotti Fragonara
{"title":"In-orbit system identification of a flexible satellite with variable mass using dual Unscented Kalman filters","authors":"Alex J. Elliott , Aydin Nakhaeezadeh Gutierrez , Leonard Felicetti , Luca Zanotti Fragonara","doi":"10.1016/j.actaastro.2024.11.014","DOIUrl":null,"url":null,"abstract":"<div><div>Modern space mission concepts are increasingly dependent on the robust and reliable deployment of spacecraft with large appendages, such as antennas, booms or solar panels. Such deployment requires the ability to properly capture and control the coupled system dynamics, which requires accurate in-orbit system identification of the mass and structural properties. This paper utilises dual Unscented Kalman filters (DUKF) to develop an online system identification strategy that captures both the structural and mass properties, and the attitude and orbit dynamics. The dynamics of the flexible multibody problem are derived from the Lagrangian equations, with the flexible body characteristics modelled with finite element software. A genetic algorithm is used to optimise the accelerometer placement, and hence improve the DUKF performance. We demonstrate that this approach can accurately capture the coupled attitude, orbit, and structural dynamics, as well as being able to provide in-orbit updates for mass properties such as the moment of inertia. The methodology is explored for two illustrative cases: one in which the initial moment of inertia is incorrectly characterised, one in which the moment of inertia changes with time. In both cases, the DUKF approach captures both the system dynamics and the mass properties, which are captured with an error of less than 1%.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 71-86"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009457652400660X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Modern space mission concepts are increasingly dependent on the robust and reliable deployment of spacecraft with large appendages, such as antennas, booms or solar panels. Such deployment requires the ability to properly capture and control the coupled system dynamics, which requires accurate in-orbit system identification of the mass and structural properties. This paper utilises dual Unscented Kalman filters (DUKF) to develop an online system identification strategy that captures both the structural and mass properties, and the attitude and orbit dynamics. The dynamics of the flexible multibody problem are derived from the Lagrangian equations, with the flexible body characteristics modelled with finite element software. A genetic algorithm is used to optimise the accelerometer placement, and hence improve the DUKF performance. We demonstrate that this approach can accurately capture the coupled attitude, orbit, and structural dynamics, as well as being able to provide in-orbit updates for mass properties such as the moment of inertia. The methodology is explored for two illustrative cases: one in which the initial moment of inertia is incorrectly characterised, one in which the moment of inertia changes with time. In both cases, the DUKF approach captures both the system dynamics and the mass properties, which are captured with an error of less than 1%.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.