{"title":"Mechanical performance and self-sensing capability of an amorphous fiber-reinforced concrete for radioactive waste storage facilities","authors":"Théophile Bouillard , Anaclet Turatsinze , Olivier Helson , Jean-Paul Balayssac , Ahmed Toumi , Carole Soula","doi":"10.1016/j.nucengdes.2024.113727","DOIUrl":null,"url":null,"abstract":"<div><div>This study results from a research project initiated by the French National Radioactive Waste Management Agency (Andra) as a part of the Cigéo (Industrial Center for Geological Disposal) project. This project addresses many challenges related to sustainability, and health monitoring of confinement structures planned by Andra. In order to reduce issues related to corrosion in the tunnels, fiber reinforcement can be used to reduce the amount of steel reinforcement while maintaining high mechanical performance and durability. The fibers used in this study are named Fibraflex, metallic fibers provided by Saint Gobain SEVA. Various aspect ratios (82 and 123) and volume ratios (0.27% and 0.41%) of fibers were tested. These fibers feature high specific surface area (around 70 m<sup>2</sup>/m<sup>3</sup>), corrosion resistance, and high electrical conductivity. To characterize the contribution of fibers to concrete mechanical performances, European standard EN 14651 flexural tensile tests were conducted. Results show that fibers bring better performances, especially concerning the post-peak behavior. In fact, fibers effectively transfer stresses across cracks, resulting in better residual tensile strengths. Since these fibers are electrically conductive, tests were also conducted to design self-sensing concrete based on electrical measurements. Firstly, resistivity was monitored on saturated specimens with different mix design throughout the curing time. Results show that when fibers were added, concrete resistivity was reduced due to the ability of the fibers to transmit electrons. A relationship between reinforcement index and resistivity was thus revealed. The self-sensing capacity was investigated on specimens subjected to cyclic bending loading, with electrical properties measured by using a Wheatstone bridge. Results show a good agreement between the level of cracking in concrete and its electrical response.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"431 ","pages":"Article 113727"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324008276","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study results from a research project initiated by the French National Radioactive Waste Management Agency (Andra) as a part of the Cigéo (Industrial Center for Geological Disposal) project. This project addresses many challenges related to sustainability, and health monitoring of confinement structures planned by Andra. In order to reduce issues related to corrosion in the tunnels, fiber reinforcement can be used to reduce the amount of steel reinforcement while maintaining high mechanical performance and durability. The fibers used in this study are named Fibraflex, metallic fibers provided by Saint Gobain SEVA. Various aspect ratios (82 and 123) and volume ratios (0.27% and 0.41%) of fibers were tested. These fibers feature high specific surface area (around 70 m2/m3), corrosion resistance, and high electrical conductivity. To characterize the contribution of fibers to concrete mechanical performances, European standard EN 14651 flexural tensile tests were conducted. Results show that fibers bring better performances, especially concerning the post-peak behavior. In fact, fibers effectively transfer stresses across cracks, resulting in better residual tensile strengths. Since these fibers are electrically conductive, tests were also conducted to design self-sensing concrete based on electrical measurements. Firstly, resistivity was monitored on saturated specimens with different mix design throughout the curing time. Results show that when fibers were added, concrete resistivity was reduced due to the ability of the fibers to transmit electrons. A relationship between reinforcement index and resistivity was thus revealed. The self-sensing capacity was investigated on specimens subjected to cyclic bending loading, with electrical properties measured by using a Wheatstone bridge. Results show a good agreement between the level of cracking in concrete and its electrical response.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.