Developing a Research Center for Artificial Intelligence in Medicine

Curtis P. Langlotz MD, PhD , Johanna Kim MPH, MBA , Nigam Shah MBBS, PhD , Matthew P. Lungren MD, MPH , David B. Larson MD, MBA , Somalee Datta PhD , Fei Fei Li PhD , Ruth O’Hara PhD , Thomas J. Montine MD, PhD , Robert A. Harrington MD , Garry E. Gold MD, MS
{"title":"Developing a Research Center for Artificial Intelligence in Medicine","authors":"Curtis P. Langlotz MD, PhD ,&nbsp;Johanna Kim MPH, MBA ,&nbsp;Nigam Shah MBBS, PhD ,&nbsp;Matthew P. Lungren MD, MPH ,&nbsp;David B. Larson MD, MBA ,&nbsp;Somalee Datta PhD ,&nbsp;Fei Fei Li PhD ,&nbsp;Ruth O’Hara PhD ,&nbsp;Thomas J. Montine MD, PhD ,&nbsp;Robert A. Harrington MD ,&nbsp;Garry E. Gold MD, MS","doi":"10.1016/j.mcpdig.2024.07.005","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial intelligence (AI) and machine learning (ML) are driving innovation in biosciences and are already affecting key elements of medical scholarship and clinical care. Many schools of medicine are capitalizing on the promise of these new technologies by establishing academic units to catalyze and grow research and innovation in AI/ML. At Stanford University, we have developed a successful model for an AI/ML research center with support from academic leaders, clinical departments, extramural grants, and industry partners. The Center for Artificial Intelligence in Medicine and Imaging uses the following 4 key tactics to support AI/ML research: project-based learning opportunities that build interdisciplinary collaboration; internal grant programs that catalyze extramural funding; infrastructure that facilitates the rapid creation of large multimodal AI-ready clinical data sets; and educational and open data programs that engage the broader research community. The center is based on the premise that foundational and applied research are not in tension but instead are complementary. Solving important biomedical problems with AI/ML requires high-quality foundational team science that incorporates the knowledge and expertise of clinicians, clinician scientists, computer scientists, and data scientists. As AI/ML becomes an essential component of research and clinical care, multidisciplinary centers of excellence in AI/ML will become a key part of the scholarly portfolio of academic medical centers and will provide a foundation for the responsible, ethical, and fair implementation of AI/ML systems.</div></div>","PeriodicalId":74127,"journal":{"name":"Mayo Clinic Proceedings. Digital health","volume":"2 4","pages":"Pages 677-686"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mayo Clinic Proceedings. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949761224001068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) and machine learning (ML) are driving innovation in biosciences and are already affecting key elements of medical scholarship and clinical care. Many schools of medicine are capitalizing on the promise of these new technologies by establishing academic units to catalyze and grow research and innovation in AI/ML. At Stanford University, we have developed a successful model for an AI/ML research center with support from academic leaders, clinical departments, extramural grants, and industry partners. The Center for Artificial Intelligence in Medicine and Imaging uses the following 4 key tactics to support AI/ML research: project-based learning opportunities that build interdisciplinary collaboration; internal grant programs that catalyze extramural funding; infrastructure that facilitates the rapid creation of large multimodal AI-ready clinical data sets; and educational and open data programs that engage the broader research community. The center is based on the premise that foundational and applied research are not in tension but instead are complementary. Solving important biomedical problems with AI/ML requires high-quality foundational team science that incorporates the knowledge and expertise of clinicians, clinician scientists, computer scientists, and data scientists. As AI/ML becomes an essential component of research and clinical care, multidisciplinary centers of excellence in AI/ML will become a key part of the scholarly portfolio of academic medical centers and will provide a foundation for the responsible, ethical, and fair implementation of AI/ML systems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mayo Clinic Proceedings. Digital health
Mayo Clinic Proceedings. Digital health Medicine and Dentistry (General), Health Informatics, Public Health and Health Policy
自引率
0.00%
发文量
0
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信