Jeongwoo Jang , Junhyoung Jo , Jinsu Kim , Seungmin Lee , Tonghun Lee , Jihyung Yoo
{"title":"State of health estimation of lithium-ion battery cell based on optical thermometry with physics-informed machine learning","authors":"Jeongwoo Jang , Junhyoung Jo , Jinsu Kim , Seungmin Lee , Tonghun Lee , Jihyung Yoo","doi":"10.1016/j.engappai.2024.109704","DOIUrl":null,"url":null,"abstract":"<div><div>Effective thermal management and accurate state of health (SOH) estimation of lithium-ion batteries is crucial for ensuring their safety, reliability, and longevity. This study presents three innovative physics-informed machine learning-based SOH estimation techniques trained and demonstrated using experimental temperature data. Temperature distribution measurements were obtained using optical frequency domain reflectometry with optical fibers embedded in a cylindrical lithium-ion battery cell under various SOH. One of the trained model accurately predicted the SOH of a cell within 2% with only a 10-minute measurement. This technique also enables the estimation of SOH for individual cells connected in series or parallel within a battery module or pack simultaneously, thereby reducing the overall SOH estimation uncertainty without the need for disassembly. Furthermore, this not only highlights the necessity of precise thermal management in maintaining battery health but also offers a practical and efficient solution for real-time SOH monitoring in battery systems.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"140 ","pages":"Article 109704"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624018621","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Effective thermal management and accurate state of health (SOH) estimation of lithium-ion batteries is crucial for ensuring their safety, reliability, and longevity. This study presents three innovative physics-informed machine learning-based SOH estimation techniques trained and demonstrated using experimental temperature data. Temperature distribution measurements were obtained using optical frequency domain reflectometry with optical fibers embedded in a cylindrical lithium-ion battery cell under various SOH. One of the trained model accurately predicted the SOH of a cell within 2% with only a 10-minute measurement. This technique also enables the estimation of SOH for individual cells connected in series or parallel within a battery module or pack simultaneously, thereby reducing the overall SOH estimation uncertainty without the need for disassembly. Furthermore, this not only highlights the necessity of precise thermal management in maintaining battery health but also offers a practical and efficient solution for real-time SOH monitoring in battery systems.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.