{"title":"Correlation structure and resonant pairs for arithmetic random waves","authors":"Valentina Cammarota , Riccardo W. Maffucci , Domenico Marinucci , Maurizia Rossi","doi":"10.1016/j.spa.2024.104525","DOIUrl":null,"url":null,"abstract":"<div><div>The geometry of Arithmetic Random Waves has been extensively investigated in the last fifteen years, starting from the seminal papers (Rudnick and Wigman, 2008; Oravecz et al., 2008). In this paper we study the correlation structure among different functionals such as nodal length, boundary length of excursion sets, and the number of intersection of nodal sets with deterministic curves in different classes; the amount of correlation depends in a subtle fashion from the values of the thresholds considered and the symmetry properties of the deterministic curves. In particular, we prove the existence of <em>resonant pairs</em> of threshold values where the asymptotic correlation is full, that is, at such values one functional can be perfectly predicted from the other in the high energy limit. We focus mainly on the 2-dimensional case but we discuss some specific extensions to dimension 3.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"181 ","pages":"Article 104525"},"PeriodicalIF":1.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002333","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The geometry of Arithmetic Random Waves has been extensively investigated in the last fifteen years, starting from the seminal papers (Rudnick and Wigman, 2008; Oravecz et al., 2008). In this paper we study the correlation structure among different functionals such as nodal length, boundary length of excursion sets, and the number of intersection of nodal sets with deterministic curves in different classes; the amount of correlation depends in a subtle fashion from the values of the thresholds considered and the symmetry properties of the deterministic curves. In particular, we prove the existence of resonant pairs of threshold values where the asymptotic correlation is full, that is, at such values one functional can be perfectly predicted from the other in the high energy limit. We focus mainly on the 2-dimensional case but we discuss some specific extensions to dimension 3.
期刊介绍:
Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests.
Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.