Lightweight advanced deep-learning models for stress detection on social media

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Mohammed Qorich, Rajae El Ouazzani
{"title":"Lightweight advanced deep-learning models for stress detection on social media","authors":"Mohammed Qorich,&nbsp;Rajae El Ouazzani","doi":"10.1016/j.engappai.2024.109720","DOIUrl":null,"url":null,"abstract":"<div><div>Nowadays, stress reveals itself as a ubiquitous presence, manifesting in novel forms in our modern daily life. Indeed, digital platforms and social media collect various impressions, reactions, and feelings that could provide valuable real-time sentiment data. Nevertheless, understanding stress and mental states among people is difficult because it relies on self-reporting and detecting related expressions, statements, and articulations. In this paper, we consider extracting nuanced insights and stress expressions from Reddit and Twitter posts using lightweight advanced deep-learning methods and Bidirectional Encoder Representations from Transformers (BERT) embeddings. Our findings highlight the potency of transformer BERT models, whether utilized as embedding feature extractors or as text sentiment classifiers. Moreover, the proposed lightweight deep architectural models promoted the field of stress detection in social media, achieving high classification performance. Practically, the BERT Electra model reached 85.67% accuracy on the small Reddit dataset, while our Convolutional Neural Network (CNN) model obtained 97.62% on the large Twitter dataset. Our contributions are not only restricted to the scientific understanding of stress but also extend to the well-being of individuals and global mental health.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"140 ","pages":"Article 109720"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624018785","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, stress reveals itself as a ubiquitous presence, manifesting in novel forms in our modern daily life. Indeed, digital platforms and social media collect various impressions, reactions, and feelings that could provide valuable real-time sentiment data. Nevertheless, understanding stress and mental states among people is difficult because it relies on self-reporting and detecting related expressions, statements, and articulations. In this paper, we consider extracting nuanced insights and stress expressions from Reddit and Twitter posts using lightweight advanced deep-learning methods and Bidirectional Encoder Representations from Transformers (BERT) embeddings. Our findings highlight the potency of transformer BERT models, whether utilized as embedding feature extractors or as text sentiment classifiers. Moreover, the proposed lightweight deep architectural models promoted the field of stress detection in social media, achieving high classification performance. Practically, the BERT Electra model reached 85.67% accuracy on the small Reddit dataset, while our Convolutional Neural Network (CNN) model obtained 97.62% on the large Twitter dataset. Our contributions are not only restricted to the scientific understanding of stress but also extend to the well-being of individuals and global mental health.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信