Mechanism of microfracture propagation under mechanical–chemical coupling conditions considering dissolution

0 ENERGY & FUELS
Yan Zhuang , Tiantian Zhang , Xiangjun Liu , Shifeng Zhang , Lixi Liang , Jian Xiong , Xiaojian Zhang
{"title":"Mechanism of microfracture propagation under mechanical–chemical coupling conditions considering dissolution","authors":"Yan Zhuang ,&nbsp;Tiantian Zhang ,&nbsp;Xiangjun Liu ,&nbsp;Shifeng Zhang ,&nbsp;Lixi Liang ,&nbsp;Jian Xiong ,&nbsp;Xiaojian Zhang","doi":"10.1016/j.geoen.2024.213544","DOIUrl":null,"url":null,"abstract":"<div><div>Microfracture propagation is well known to significantly impact the stability of well bores in shale formations; however, there is a lack of research on the role of dissolution. Herein, a shale microfracture propagation model is constructed that couples mechanics and chemistry by considering hydration, capillary, strength weakening, and dissolution effects. Combining relevant experiments with the model reveals the mechanism of microfracture propagation. Results indicate that ΔK(stress intensity factor) shows an upward trend with increasing hydration micromechanical forces and when hydration time exceeds 30 h, the rate of increase in ΔK gradually slows down. ΔK increases linearly with tensile strength. When the yield zone length “a” remains constant, ΔK first decreases and then increases with increasing a/b ratio, reaching its minimum value when the a/b ratio is 0.6. ΔK shows a linear increase with interfacial tension and decreases with increasing wetting angle and initiation angle of cracking. The dissolution of carbonate minerals can considerably influence the propagation of microcracks. Initially, the impact of this dissolution may not be pronounced; however, as the duration of the rock samples' exposure to the dissolution process exceeds 100 h, the increase in the stress intensity factor becomes substantial. The increase in ΔK accelerates the propagation of microcracks within rocks. Constructing a shale microfracture propagation model based on dissolution effects is crucial for elucidating the microscopic mechanisms of mechanical–chemical coupled changes in shale microfractures, which is significant for analyzing wellbore stability.</div></div>","PeriodicalId":100578,"journal":{"name":"Geoenergy Science and Engineering","volume":"245 ","pages":"Article 213544"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoenergy Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294989102400914X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Microfracture propagation is well known to significantly impact the stability of well bores in shale formations; however, there is a lack of research on the role of dissolution. Herein, a shale microfracture propagation model is constructed that couples mechanics and chemistry by considering hydration, capillary, strength weakening, and dissolution effects. Combining relevant experiments with the model reveals the mechanism of microfracture propagation. Results indicate that ΔK(stress intensity factor) shows an upward trend with increasing hydration micromechanical forces and when hydration time exceeds 30 h, the rate of increase in ΔK gradually slows down. ΔK increases linearly with tensile strength. When the yield zone length “a” remains constant, ΔK first decreases and then increases with increasing a/b ratio, reaching its minimum value when the a/b ratio is 0.6. ΔK shows a linear increase with interfacial tension and decreases with increasing wetting angle and initiation angle of cracking. The dissolution of carbonate minerals can considerably influence the propagation of microcracks. Initially, the impact of this dissolution may not be pronounced; however, as the duration of the rock samples' exposure to the dissolution process exceeds 100 h, the increase in the stress intensity factor becomes substantial. The increase in ΔK accelerates the propagation of microcracks within rocks. Constructing a shale microfracture propagation model based on dissolution effects is crucial for elucidating the microscopic mechanisms of mechanical–chemical coupled changes in shale microfractures, which is significant for analyzing wellbore stability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信