Rethinking residual connection in training large-scale spiking neural networks

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yudong Li, Yunlin Lei, Xu Yang
{"title":"Rethinking residual connection in training large-scale spiking neural networks","authors":"Yudong Li,&nbsp;Yunlin Lei,&nbsp;Xu Yang","doi":"10.1016/j.neucom.2024.128950","DOIUrl":null,"url":null,"abstract":"<div><div>Spiking Neural Network (SNN) is known as the most famous brain-inspired model, but the non-differentiable spiking mechanism makes it hard to train large-scale SNNs. To facilitate the training of large-scale SNNs, many training methods are borrowed from Artificial Neural Networks (ANNs), among which deep residual learning is the most commonly used. But the unique features of SNNs make prior intuition built upon ANNs not available for SNNs. Although there are a few studies that have made some pioneer attempts on the topology of Spiking ResNet, the advantages of different connections remain unclear. To tackle this issue, we analyze the merits and limitations of various residual connections and empirically demonstrate our ideas with extensive experiments. Then, based on our observations, we abstract the best-performing connections into densely additive (DA) connection, extend such a concept to other topologies, and propose four architectures for training large-scale SNNs, termed DANet, which brings up to 13.24<span><math><mtext>%</mtext></math></span> accuracy gain on ImageNet. Besides, in order to present a detailed methodology for designing the topology of large-scale SNNs, we further conduct in-depth discussions on their applicable scenarios in terms of their performance on various scales of datasets and demonstrate their advantages over prior architectures. At a low training expense, our best-performing ResNet-50/101/152 obtain 73.71<span><math><mtext>%</mtext></math></span>/76.13<span><math><mtext>%</mtext></math></span>/77.22<span><math><mtext>%</mtext></math></span> top-1 accuracy on ImageNet with 4 time steps. We believe that this work shall give more insights for future works to design the topology of their networks and promote the development of large-scale SNNs. The code will be publicly available.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"616 ","pages":"Article 128950"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224017211","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Spiking Neural Network (SNN) is known as the most famous brain-inspired model, but the non-differentiable spiking mechanism makes it hard to train large-scale SNNs. To facilitate the training of large-scale SNNs, many training methods are borrowed from Artificial Neural Networks (ANNs), among which deep residual learning is the most commonly used. But the unique features of SNNs make prior intuition built upon ANNs not available for SNNs. Although there are a few studies that have made some pioneer attempts on the topology of Spiking ResNet, the advantages of different connections remain unclear. To tackle this issue, we analyze the merits and limitations of various residual connections and empirically demonstrate our ideas with extensive experiments. Then, based on our observations, we abstract the best-performing connections into densely additive (DA) connection, extend such a concept to other topologies, and propose four architectures for training large-scale SNNs, termed DANet, which brings up to 13.24% accuracy gain on ImageNet. Besides, in order to present a detailed methodology for designing the topology of large-scale SNNs, we further conduct in-depth discussions on their applicable scenarios in terms of their performance on various scales of datasets and demonstrate their advantages over prior architectures. At a low training expense, our best-performing ResNet-50/101/152 obtain 73.71%/76.13%/77.22% top-1 accuracy on ImageNet with 4 time steps. We believe that this work shall give more insights for future works to design the topology of their networks and promote the development of large-scale SNNs. The code will be publicly available.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信