Ali Ghodba , Anne Richelle , Chris McCready , Luis Ricardez-Sandoval , Hector Budman
{"title":"A robust batch-to-batch optimization framework for pharmaceutical applications","authors":"Ali Ghodba , Anne Richelle , Chris McCready , Luis Ricardez-Sandoval , Hector Budman","doi":"10.1016/j.compchemeng.2024.108935","DOIUrl":null,"url":null,"abstract":"<div><div>The study proposes a robust algorithm for batch-to-batch optimization in the presence of model-mismatch. Robustness is achieved by the implementation of the following features: i — the gradient correction step is modified to consider the gradients of the cost function and constraints at both final and intermediate points, ii — Economic Model Predictive Control is applied to mitigate the impact of unmeasured disturbances on the optimum, and iii — an optimal design of experiments is performed to expedite convergence. Significant improvements of the proposed algorithm in convergence to the process optimum and robustness to noise, unmeasured disturbances, and model error are demonstrated using a fed-batch fermentation for penicillin production.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"193 ","pages":"Article 108935"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135424003533","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The study proposes a robust algorithm for batch-to-batch optimization in the presence of model-mismatch. Robustness is achieved by the implementation of the following features: i — the gradient correction step is modified to consider the gradients of the cost function and constraints at both final and intermediate points, ii — Economic Model Predictive Control is applied to mitigate the impact of unmeasured disturbances on the optimum, and iii — an optimal design of experiments is performed to expedite convergence. Significant improvements of the proposed algorithm in convergence to the process optimum and robustness to noise, unmeasured disturbances, and model error are demonstrated using a fed-batch fermentation for penicillin production.
期刊介绍:
Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.