High-strength poly(vinyl alcohol) physical eutectogels: Effects of polymer molecular weight, DES composition, and heat treatment

IF 5.3 2区 化学 Q2 CHEMISTRY, PHYSICAL
Ruei-Min Chuang , Trung Hieu Vo , Heng-Kwong Tsao , Yu-Jane Sheng
{"title":"High-strength poly(vinyl alcohol) physical eutectogels: Effects of polymer molecular weight, DES composition, and heat treatment","authors":"Ruei-Min Chuang ,&nbsp;Trung Hieu Vo ,&nbsp;Heng-Kwong Tsao ,&nbsp;Yu-Jane Sheng","doi":"10.1016/j.molliq.2024.126592","DOIUrl":null,"url":null,"abstract":"<div><div>A one-step manufacturing process is employed to fabricate stretchable physical eutectogels. It involves directly mixing polyvinyl alcohol (PVA) with choline chloride as a hydrogen bond acceptor and either ethylene glycol or glycerol (Gly) as a hydrogen bond donor. This process results in the formation of numerous crystallite domains of PVA within the deep eutectic solvent (DES), which act as physical crosslinking points in the eutectogel. The study systematically investigates the effects of PVA molecular weight, DES composition, and various heat treatments on the mechanical properties of eutectogels. The stress–strain curves demonstrate that a higher PVA molecular weight, the addition of Gly to the DES, and repeated freeze–thaw cycles can enhance the mechanical properties of the PVA physical eutectogel. Finally, scanning electron microscopy and X-ray diffraction are used to examine and analyze the polymer networks and crystallite domains in terms of pore size, crystallinity, and crystallite domain size.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"417 ","pages":"Article 126592"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732224026515","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A one-step manufacturing process is employed to fabricate stretchable physical eutectogels. It involves directly mixing polyvinyl alcohol (PVA) with choline chloride as a hydrogen bond acceptor and either ethylene glycol or glycerol (Gly) as a hydrogen bond donor. This process results in the formation of numerous crystallite domains of PVA within the deep eutectic solvent (DES), which act as physical crosslinking points in the eutectogel. The study systematically investigates the effects of PVA molecular weight, DES composition, and various heat treatments on the mechanical properties of eutectogels. The stress–strain curves demonstrate that a higher PVA molecular weight, the addition of Gly to the DES, and repeated freeze–thaw cycles can enhance the mechanical properties of the PVA physical eutectogel. Finally, scanning electron microscopy and X-ray diffraction are used to examine and analyze the polymer networks and crystallite domains in terms of pore size, crystallinity, and crystallite domain size.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Liquids
Journal of Molecular Liquids 化学-物理:原子、分子和化学物理
CiteScore
10.30
自引率
16.70%
发文量
2597
审稿时长
78 days
期刊介绍: The journal includes papers in the following areas: – Simple organic liquids and mixtures – Ionic liquids – Surfactant solutions (including micelles and vesicles) and liquid interfaces – Colloidal solutions and nanoparticles – Thermotropic and lyotropic liquid crystals – Ferrofluids – Water, aqueous solutions and other hydrogen-bonded liquids – Lubricants, polymer solutions and melts – Molten metals and salts – Phase transitions and critical phenomena in liquids and confined fluids – Self assembly in complex liquids.– Biomolecules in solution The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include: – Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.) – Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.) – Light scattering (Rayleigh, Brillouin, PCS, etc.) – Dielectric relaxation – X-ray and neutron scattering and diffraction. Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信