Uncertainty-aware regression model to predict post-operative visual acuity in patients with macular holes

IF 5.4 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Burak Kucukgoz , Ke Zou , Declan C. Murphy , David H. Steel , Boguslaw Obara , Huazhu Fu
{"title":"Uncertainty-aware regression model to predict post-operative visual acuity in patients with macular holes","authors":"Burak Kucukgoz ,&nbsp;Ke Zou ,&nbsp;Declan C. Murphy ,&nbsp;David H. Steel ,&nbsp;Boguslaw Obara ,&nbsp;Huazhu Fu","doi":"10.1016/j.compmedimag.2024.102461","DOIUrl":null,"url":null,"abstract":"<div><div>Full-thickness macular holes are a relatively common and visually disabling condition with a prevalence of approximately 0.5% in the over-40-year-old age group. If left untreated, the hole typically enlarges, reducing visual acuity (VA) below the definition of blindness in the eye affected. They are now routinely treated with surgery, which can close the hole and improve vision in most cases. The extent of improvement, however, is variable and dependent on the size of the hole and other features which can be discerned in spectral-domain optical coherence tomography imaging, which is now routinely available in eye clinics globally. Artificial intelligence (AI) models have been developed to enable surgical decision-making and have achieved relatively high predictive performance. However, their black-box behavior is opaque to users and uncertainty associated with their predictions is not typically stated, leading to a lack of trust among clinicians and patients. In this paper, we describe an uncertainty-aware regression model (U-ARM) for predicting VA for people undergoing macular hole surgery using preoperative spectral-domain optical coherence tomography images, achieving an MAE of 6.07, RMSE of 9.11 and R2 of 0.47 in internal tests, and an MAE of 6.49, RMSE of 9.49, and R2 of 0.42 in external tests. In addition to predicting VA following surgery, U-ARM displays its associated uncertainty, a <span><math><mi>p</mi></math></span>-value of &lt;0.005 in internal and external tests, showing the predictions are not due to random chance. We then qualitatively evaluated the performance of U-ARM. Lastly, we demonstrate out-of-sample data performance, generalizing well to data outside the training distribution, low-quality images, and unseen instances not encountered during training. The results show that U-ARM outperforms commonly used methods in terms of prediction and reliability. U-ARM is thus a promising approach for clinical settings and can improve the reliability of AI models in predicting VA.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"119 ","pages":"Article 102461"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124001381","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Full-thickness macular holes are a relatively common and visually disabling condition with a prevalence of approximately 0.5% in the over-40-year-old age group. If left untreated, the hole typically enlarges, reducing visual acuity (VA) below the definition of blindness in the eye affected. They are now routinely treated with surgery, which can close the hole and improve vision in most cases. The extent of improvement, however, is variable and dependent on the size of the hole and other features which can be discerned in spectral-domain optical coherence tomography imaging, which is now routinely available in eye clinics globally. Artificial intelligence (AI) models have been developed to enable surgical decision-making and have achieved relatively high predictive performance. However, their black-box behavior is opaque to users and uncertainty associated with their predictions is not typically stated, leading to a lack of trust among clinicians and patients. In this paper, we describe an uncertainty-aware regression model (U-ARM) for predicting VA for people undergoing macular hole surgery using preoperative spectral-domain optical coherence tomography images, achieving an MAE of 6.07, RMSE of 9.11 and R2 of 0.47 in internal tests, and an MAE of 6.49, RMSE of 9.49, and R2 of 0.42 in external tests. In addition to predicting VA following surgery, U-ARM displays its associated uncertainty, a p-value of <0.005 in internal and external tests, showing the predictions are not due to random chance. We then qualitatively evaluated the performance of U-ARM. Lastly, we demonstrate out-of-sample data performance, generalizing well to data outside the training distribution, low-quality images, and unseen instances not encountered during training. The results show that U-ARM outperforms commonly used methods in terms of prediction and reliability. U-ARM is thus a promising approach for clinical settings and can improve the reliability of AI models in predicting VA.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
3.50%
发文量
71
审稿时长
26 days
期刊介绍: The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信