Simulation of mixed mode I-II fatigue crack propagation in concrete with different strengths

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Hong Chen , Zhimin Wu , Rena C. Yu
{"title":"Simulation of mixed mode I-II fatigue crack propagation in concrete with different strengths","authors":"Hong Chen ,&nbsp;Zhimin Wu ,&nbsp;Rena C. Yu","doi":"10.1016/j.tafmec.2024.104779","DOIUrl":null,"url":null,"abstract":"<div><div>The mode-I fatigue crack propagation in concrete has been extensively studied. However, many concrete structure failures occur subjected to mixed-mode fatigue loads in practice. The accurate predictions for the mixed mode I-II fatigue crack propagation and fatigue life are crucial for evaluating the structural safety of concrete constructions. In this paper, the mixed mode I-II fatigue crack propagation process on concrete with different strengths is simulated using the fatigue tension-softening constitutive model and the crack propagation criterion of the initial fracture toughness as a parameter (SIF-based criterion). The numerical results indicated that the fatigue crack length decreases with increasing the concrete strength for a given fatigue load level, but the fatigue life significantly increases with concrete strength. Further, a modified Paris law is presented on the basis of the numerical results for concrete with different strengths. With the known tensile strength of concrete, the mixed mode I-II fatigue crack propagation rate of concrete with different strengths can be presented. The proposed model in this study is useful in further predicting the fatigue life of concrete structures under mixed-mode fatigue loads.</div></div>","PeriodicalId":22879,"journal":{"name":"Theoretical and Applied Fracture Mechanics","volume":"135 ","pages":"Article 104779"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167844224005299","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The mode-I fatigue crack propagation in concrete has been extensively studied. However, many concrete structure failures occur subjected to mixed-mode fatigue loads in practice. The accurate predictions for the mixed mode I-II fatigue crack propagation and fatigue life are crucial for evaluating the structural safety of concrete constructions. In this paper, the mixed mode I-II fatigue crack propagation process on concrete with different strengths is simulated using the fatigue tension-softening constitutive model and the crack propagation criterion of the initial fracture toughness as a parameter (SIF-based criterion). The numerical results indicated that the fatigue crack length decreases with increasing the concrete strength for a given fatigue load level, but the fatigue life significantly increases with concrete strength. Further, a modified Paris law is presented on the basis of the numerical results for concrete with different strengths. With the known tensile strength of concrete, the mixed mode I-II fatigue crack propagation rate of concrete with different strengths can be presented. The proposed model in this study is useful in further predicting the fatigue life of concrete structures under mixed-mode fatigue loads.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical and Applied Fracture Mechanics
Theoretical and Applied Fracture Mechanics 工程技术-工程:机械
CiteScore
8.40
自引率
18.90%
发文量
435
审稿时长
37 days
期刊介绍: Theoretical and Applied Fracture Mechanics'' aims & scopes have been re-designed to cover both the theoretical, applied, and numerical aspects associated with those cracking related phenomena taking place, at a micro-, meso-, and macroscopic level, in materials/components/structures of any kind. The journal aims to cover the cracking/mechanical behaviour of materials/components/structures in those situations involving both time-independent and time-dependent system of external forces/moments (such as, for instance, quasi-static, impulsive, impact, blasting, creep, contact, and fatigue loading). Since, under the above circumstances, the mechanical behaviour of cracked materials/components/structures is also affected by the environmental conditions, the journal would consider also those theoretical/experimental research works investigating the effect of external variables such as, for instance, the effect of corrosive environments as well as of high/low-temperature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信