{"title":"Lax-Wendroff flux reconstruction on adaptive curvilinear meshes with error based time stepping for hyperbolic conservation laws","authors":"Arpit Babbar, Praveen Chandrashekar","doi":"10.1016/j.jcp.2024.113622","DOIUrl":null,"url":null,"abstract":"<div><div>Lax-Wendroff Flux Reconstruction (LWFR) is a single-stage, high order, quadrature free method for solving hyperbolic conservation laws. This work extends the LWFR scheme to solve conservation laws on curvilinear meshes with adaptive mesh refinement (AMR). The scheme uses a subcell based blending limiter to perform shock capturing and exploits the same subcell structure to obtain admissibility preservation on curvilinear meshes. It is proven that the proposed extension of LWFR scheme to curvilinear grids preserves constant solution (free stream preservation) under the standard metric identities. For curvilinear meshes, linear Fourier stability analysis cannot be used to obtain an optimal CFL number. Thus, an embedded-error based time step computation method is proposed for LWFR method which reduces fine-tuning process required to select a stable CFL number using the wave speed based time step computation. The developments are tested on compressible Euler's equations, validating the blending limiter, admissibility preservation, AMR algorithm, curvilinear meshes and error based time stepping.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"522 ","pages":"Article 113622"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008702","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Lax-Wendroff Flux Reconstruction (LWFR) is a single-stage, high order, quadrature free method for solving hyperbolic conservation laws. This work extends the LWFR scheme to solve conservation laws on curvilinear meshes with adaptive mesh refinement (AMR). The scheme uses a subcell based blending limiter to perform shock capturing and exploits the same subcell structure to obtain admissibility preservation on curvilinear meshes. It is proven that the proposed extension of LWFR scheme to curvilinear grids preserves constant solution (free stream preservation) under the standard metric identities. For curvilinear meshes, linear Fourier stability analysis cannot be used to obtain an optimal CFL number. Thus, an embedded-error based time step computation method is proposed for LWFR method which reduces fine-tuning process required to select a stable CFL number using the wave speed based time step computation. The developments are tested on compressible Euler's equations, validating the blending limiter, admissibility preservation, AMR algorithm, curvilinear meshes and error based time stepping.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.