Position-aware representation learning with anatomical priors for enhanced pancreas tumor segmentation

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kaiqi Dong , Peijun Hu , Yu Tian , Yan Zhu , Xiang Li , Tianshu Zhou , Xueli Bai , Tingbo Liang , Jingsong Li
{"title":"Position-aware representation learning with anatomical priors for enhanced pancreas tumor segmentation","authors":"Kaiqi Dong ,&nbsp;Peijun Hu ,&nbsp;Yu Tian ,&nbsp;Yan Zhu ,&nbsp;Xiang Li ,&nbsp;Tianshu Zhou ,&nbsp;Xueli Bai ,&nbsp;Tingbo Liang ,&nbsp;Jingsong Li","doi":"10.1016/j.neucom.2024.128881","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate pancreatic tumor segmentation in CT images is crucial but challenging due to the complex anatomy and varied tumor appearance. Previous methods predominantly adopt two-stage segmentation approaches to identify and localize tumors and rely heavily on CNN-extracted texture features. In this study, we propose a tumor position-aware branch to learn pancreatic anatomical priors and integrate them into a standard 3D U-Net segmentation network. The tumor position-aware branch consists of three innovative components. Firstly, the proposed method utilizes discrete information bottleneck theory to extract compact and informative segmentation features with pancreatic anatomical priors. Secondly, we propose a coordinate position encoding transformer that encodes the spatial coordinates of each patch within the CT volume. This encoding provides the model with a global positional context, allowing it to effectively model the spatial relationships between anatomical structures. Thirdly, a probability margin regularization loss is proposed to further eliminate the interference of background patches on the learning of pancreatic anatomical positions. Our model is trained and validated our model on the public Medical Segmentation Decathlon (MSD) dataset and a private clinical dataset. Experimental results demonstrate that our approach achieves competitive performance compared to state-of-the-art (SOTA) methods in both pancreas and tumor segmentation, with Dice scores of 82.11% for the pancreas and 55.56% for the tumor on the MSD dataset. The proposed framework offers an effective solution to leverage anatomical priors and enhance representation learning for improved pancreatic tumor segmentation.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"616 ","pages":"Article 128881"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016527","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate pancreatic tumor segmentation in CT images is crucial but challenging due to the complex anatomy and varied tumor appearance. Previous methods predominantly adopt two-stage segmentation approaches to identify and localize tumors and rely heavily on CNN-extracted texture features. In this study, we propose a tumor position-aware branch to learn pancreatic anatomical priors and integrate them into a standard 3D U-Net segmentation network. The tumor position-aware branch consists of three innovative components. Firstly, the proposed method utilizes discrete information bottleneck theory to extract compact and informative segmentation features with pancreatic anatomical priors. Secondly, we propose a coordinate position encoding transformer that encodes the spatial coordinates of each patch within the CT volume. This encoding provides the model with a global positional context, allowing it to effectively model the spatial relationships between anatomical structures. Thirdly, a probability margin regularization loss is proposed to further eliminate the interference of background patches on the learning of pancreatic anatomical positions. Our model is trained and validated our model on the public Medical Segmentation Decathlon (MSD) dataset and a private clinical dataset. Experimental results demonstrate that our approach achieves competitive performance compared to state-of-the-art (SOTA) methods in both pancreas and tumor segmentation, with Dice scores of 82.11% for the pancreas and 55.56% for the tumor on the MSD dataset. The proposed framework offers an effective solution to leverage anatomical priors and enhance representation learning for improved pancreatic tumor segmentation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信