PSscheduler: A parameter synchronization scheduling algorithm for distributed machine learning in reconfigurable optical networks

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ling Liu , Xiaoqiong Xu , Pan Zhou , Xi Chen , Daji Ergu , Hongfang Yu , Gang Sun , Mohsen Guizani
{"title":"PSscheduler: A parameter synchronization scheduling algorithm for distributed machine learning in reconfigurable optical networks","authors":"Ling Liu ,&nbsp;Xiaoqiong Xu ,&nbsp;Pan Zhou ,&nbsp;Xi Chen ,&nbsp;Daji Ergu ,&nbsp;Hongfang Yu ,&nbsp;Gang Sun ,&nbsp;Mohsen Guizani","doi":"10.1016/j.neucom.2024.128876","DOIUrl":null,"url":null,"abstract":"<div><div>With the increasing size of training datasets and models, parameter synchronization stage puts a heavy burden on the network, and communication has become one of the main performance bottlenecks of distributed machine learning (DML). Concurrently, optical circuit switch (OCS) with high bandwidth and reconfigurable features has increasingly introduced into the construction of network topology, obtaining the reconfigurable optical networks. Actually, OCS is conducive to accelerating the parameter synchronization stage, and thus improves training performance. However, unreasonable circuit scheduling algorithm has a great impact on parameter synchronization time because of non-negligible OCS switching delay. Besides, most of the existing circuit scheduling algorithms do not effectively use the training characteristics of DML, and the performance gains are limited. Therefore, in this paper, we study the parameter synchronization scheduling algorithm in reconfigurable optical networks, and propose PSscheduler by jointly optimizing the circuit scheduling and deployment of parameter servers in parameter server (PS) architecture. Specifically, a mathematical optimization model is established first, which takes into account the deployment of parameter servers, the allocation of parameter blocks and circuit scheduling. Subsequently, the mathematical model is solved by relaxed variables and deterministic rounding approach. The results of simulation based on real DML workloads demonstrate that compared to <em>Sunflow</em> and <em>HLF</em> , PSscheduler is more stable and can reduce parameter synchronization time (PST) by up to 46.61% and 25%, respectively.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"616 ","pages":"Article 128876"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016473","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing size of training datasets and models, parameter synchronization stage puts a heavy burden on the network, and communication has become one of the main performance bottlenecks of distributed machine learning (DML). Concurrently, optical circuit switch (OCS) with high bandwidth and reconfigurable features has increasingly introduced into the construction of network topology, obtaining the reconfigurable optical networks. Actually, OCS is conducive to accelerating the parameter synchronization stage, and thus improves training performance. However, unreasonable circuit scheduling algorithm has a great impact on parameter synchronization time because of non-negligible OCS switching delay. Besides, most of the existing circuit scheduling algorithms do not effectively use the training characteristics of DML, and the performance gains are limited. Therefore, in this paper, we study the parameter synchronization scheduling algorithm in reconfigurable optical networks, and propose PSscheduler by jointly optimizing the circuit scheduling and deployment of parameter servers in parameter server (PS) architecture. Specifically, a mathematical optimization model is established first, which takes into account the deployment of parameter servers, the allocation of parameter blocks and circuit scheduling. Subsequently, the mathematical model is solved by relaxed variables and deterministic rounding approach. The results of simulation based on real DML workloads demonstrate that compared to Sunflow and HLF , PSscheduler is more stable and can reduce parameter synchronization time (PST) by up to 46.61% and 25%, respectively.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信