Improving multi-view ensemble learning with Round-Robin feature set partitioning

IF 2.7 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Aditya Kumar , Jainath Yadav
{"title":"Improving multi-view ensemble learning with Round-Robin feature set partitioning","authors":"Aditya Kumar ,&nbsp;Jainath Yadav","doi":"10.1016/j.datak.2024.102380","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-view Ensemble Learning (MEL) techniques have shown remarkable success in improving the accuracy and resilience of classification algorithms by combining multiple base classifiers trained over different perspectives of a dataset, known as views. One crucial factor affecting ensemble performance is the selection of diverse and informative feature subsets. Feature Set Partitioning (FSP) methods address this challenge by creating distinct views of features for each base classifier. In this context, we propose the Round-Robin Feature Set Partitioning (<span><math><mi>RR</mi></math></span>-FSP) technique, which introduces a novel approach to feature allocation among views. This novel approach evenly distributes highly correlated features across views, thereby enhancing ensemble diversity, promoting balanced feature utilization, and encouraging the more equitable distribution of correlated features, <span><math><mi>RR</mi></math></span>-FSP contributes to the advancement of MEL techniques. Through experiments on various datasets, we demonstrate that <span><math><mi>RR</mi></math></span>-FSP offers improved classification accuracy and robustness, making it a valuable addition to the arsenal of FSP techniques for MEL.</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"156 ","pages":"Article 102380"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X24001046","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-view Ensemble Learning (MEL) techniques have shown remarkable success in improving the accuracy and resilience of classification algorithms by combining multiple base classifiers trained over different perspectives of a dataset, known as views. One crucial factor affecting ensemble performance is the selection of diverse and informative feature subsets. Feature Set Partitioning (FSP) methods address this challenge by creating distinct views of features for each base classifier. In this context, we propose the Round-Robin Feature Set Partitioning (RR-FSP) technique, which introduces a novel approach to feature allocation among views. This novel approach evenly distributes highly correlated features across views, thereby enhancing ensemble diversity, promoting balanced feature utilization, and encouraging the more equitable distribution of correlated features, RR-FSP contributes to the advancement of MEL techniques. Through experiments on various datasets, we demonstrate that RR-FSP offers improved classification accuracy and robustness, making it a valuable addition to the arsenal of FSP techniques for MEL.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data & Knowledge Engineering
Data & Knowledge Engineering 工程技术-计算机:人工智能
CiteScore
5.00
自引率
0.00%
发文量
66
审稿时长
6 months
期刊介绍: Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信