Hyperspectral image denoising via cooperated self-supervised CNN transform and nonconvex regularization

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ruizhi Hou , Fang Li
{"title":"Hyperspectral image denoising via cooperated self-supervised CNN transform and nonconvex regularization","authors":"Ruizhi Hou ,&nbsp;Fang Li","doi":"10.1016/j.neucom.2024.128912","DOIUrl":null,"url":null,"abstract":"<div><div>Methods that leverage the sparsity and the low-rankness in the transformed domain have gained growing interest for hyperspectral image (HSI) denoising. Recently, many researches simultaneously utilizing low-rankness and local smoothness have emerged. Although these approaches achieve great denoising performance, they exhibit several limitations. First, the widely adopted <span><math><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> norm is a biased function, potentially leading to blurring edges. Second, employing tensor singular value decomposition (T-SVD) to ensure low-rankness brings a heavy computational burden. Additionally, the manually designed regularization norm is fixed for all testing data, which may cause a generalization problem. To address these challenges, this work proposes a novel optimization model for HSI denoising that incorporates the self-supervised CNN transform and TV regularization (CTTV) with the nonconvex function induced norm. The CNN-based transform could implicitly ensure the low-rankness of the tensor and learn the potential information in the noisy data. Furthermore, we exploit the unbiased nonconvex minimax concave penalty (MCP) to enforce the local smoothness of the extracted features while preserving sharp edges. We design an algorithm to solve the proposed model built on the hybrid of the half-quadratic splitting (HQS) and the alternating direction method of multipliers (ADMM), in which the network parameter and the denoised image are separately optimized. Extensive experiments on various datasets indicate that our proposed method can achieve state-of-the-art performance in HSI denoising.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"616 ","pages":"Article 128912"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016837","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Methods that leverage the sparsity and the low-rankness in the transformed domain have gained growing interest for hyperspectral image (HSI) denoising. Recently, many researches simultaneously utilizing low-rankness and local smoothness have emerged. Although these approaches achieve great denoising performance, they exhibit several limitations. First, the widely adopted l1 norm is a biased function, potentially leading to blurring edges. Second, employing tensor singular value decomposition (T-SVD) to ensure low-rankness brings a heavy computational burden. Additionally, the manually designed regularization norm is fixed for all testing data, which may cause a generalization problem. To address these challenges, this work proposes a novel optimization model for HSI denoising that incorporates the self-supervised CNN transform and TV regularization (CTTV) with the nonconvex function induced norm. The CNN-based transform could implicitly ensure the low-rankness of the tensor and learn the potential information in the noisy data. Furthermore, we exploit the unbiased nonconvex minimax concave penalty (MCP) to enforce the local smoothness of the extracted features while preserving sharp edges. We design an algorithm to solve the proposed model built on the hybrid of the half-quadratic splitting (HQS) and the alternating direction method of multipliers (ADMM), in which the network parameter and the denoised image are separately optimized. Extensive experiments on various datasets indicate that our proposed method can achieve state-of-the-art performance in HSI denoising.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信