An optimal transport-guided diffusion framework with mitigating mode mixture

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shenghao Li, Zhanpeng Wang, Zhongxuan Luo, Na Lei
{"title":"An optimal transport-guided diffusion framework with mitigating mode mixture","authors":"Shenghao Li,&nbsp;Zhanpeng Wang,&nbsp;Zhongxuan Luo,&nbsp;Na Lei","doi":"10.1016/j.neucom.2024.128910","DOIUrl":null,"url":null,"abstract":"<div><div>Diffusion probability models (DPMs) have achieved excellent results in image generation; however, their inference process is slow and tends to produce more mixed images. The autoencoder optimal transport (OT) model addresses the mode collapse/mixture problem from the OT perspective but produces low-quality images. Therefore, to generate high-quality images and mitigate mode mixture, we propose an innovative OT-guided diffusion framework. The key is to find the optimal truncation step <span><math><mi>M</mi></math></span> to ensure that the class boundaries of the original data do not intersect during the forward process, ensuring that the generated image belongs to the same class as the initial point in the reverse process. The value of <span><math><mi>M</mi></math></span> is determined by evaluating the Peak Signal-to-Noise Ratio, enabling us to mitigate the generation of mixed images. Specifically, our approach first involves embedding the images’ manifold into the latent space through an encoder. The images are subsequently decoded using latent codes, which are generated through an OT map from the Gaussian distribution to the empirical latent distribution. Finally, the trained <span><math><mi>M</mi></math></span>-step DPM is utilized to refine the image generated by the decoder. Experimental results demonstrate that our method not only improves image quality but also alleviates mode mixture in diffusion models. Additionally, it enhances sampling efficiency and reduces training cost compared to classical diffusion models.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"616 ","pages":"Article 128910"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016813","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion probability models (DPMs) have achieved excellent results in image generation; however, their inference process is slow and tends to produce more mixed images. The autoencoder optimal transport (OT) model addresses the mode collapse/mixture problem from the OT perspective but produces low-quality images. Therefore, to generate high-quality images and mitigate mode mixture, we propose an innovative OT-guided diffusion framework. The key is to find the optimal truncation step M to ensure that the class boundaries of the original data do not intersect during the forward process, ensuring that the generated image belongs to the same class as the initial point in the reverse process. The value of M is determined by evaluating the Peak Signal-to-Noise Ratio, enabling us to mitigate the generation of mixed images. Specifically, our approach first involves embedding the images’ manifold into the latent space through an encoder. The images are subsequently decoded using latent codes, which are generated through an OT map from the Gaussian distribution to the empirical latent distribution. Finally, the trained M-step DPM is utilized to refine the image generated by the decoder. Experimental results demonstrate that our method not only improves image quality but also alleviates mode mixture in diffusion models. Additionally, it enhances sampling efficiency and reduces training cost compared to classical diffusion models.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信