Self-training: A survey

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Massih-Reza Amini , Vasilii Feofanov , Loïc Pauletto , Liès Hadjadj , Émilie Devijver , Yury Maximov
{"title":"Self-training: A survey","authors":"Massih-Reza Amini ,&nbsp;Vasilii Feofanov ,&nbsp;Loïc Pauletto ,&nbsp;Liès Hadjadj ,&nbsp;Émilie Devijver ,&nbsp;Yury Maximov","doi":"10.1016/j.neucom.2024.128904","DOIUrl":null,"url":null,"abstract":"<div><div>Self-training methods have gained significant attention in recent years due to their effectiveness in leveraging small labeled datasets and large unlabeled observations for prediction tasks. These models identify decision boundaries in low-density regions without additional assumptions about data distribution, using the confidence scores of a learned classifier. The core principle of self-training involves iteratively assigning pseudo-labels to unlabeled samples with confidence scores above a certain threshold, enriching the labeled dataset and retraining the classifier. This paper presents self-training methods for binary and multi-class classification, along with variants and related approaches such as consistency-based methods and transductive learning. We also briefly describe self-supervised learning and reinforced self-training. Furthermore, we highlight popular applications of self-training and discuss the importance of dynamic thresholding and reducing pseudo-label noise for performance improvement.</div><div>To the best of our knowledge, this is the first thorough and complete survey on self-training.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"616 ","pages":"Article 128904"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016758","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Self-training methods have gained significant attention in recent years due to their effectiveness in leveraging small labeled datasets and large unlabeled observations for prediction tasks. These models identify decision boundaries in low-density regions without additional assumptions about data distribution, using the confidence scores of a learned classifier. The core principle of self-training involves iteratively assigning pseudo-labels to unlabeled samples with confidence scores above a certain threshold, enriching the labeled dataset and retraining the classifier. This paper presents self-training methods for binary and multi-class classification, along with variants and related approaches such as consistency-based methods and transductive learning. We also briefly describe self-supervised learning and reinforced self-training. Furthermore, we highlight popular applications of self-training and discuss the importance of dynamic thresholding and reducing pseudo-label noise for performance improvement.
To the best of our knowledge, this is the first thorough and complete survey on self-training.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信