Learning dual-pixel alignment for defocus deblurring

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yu Li, Yaling Yi, Xinya Shu, Dongwei Ren, Qince Li, Wangmeng Zuo
{"title":"Learning dual-pixel alignment for defocus deblurring","authors":"Yu Li,&nbsp;Yaling Yi,&nbsp;Xinya Shu,&nbsp;Dongwei Ren,&nbsp;Qince Li,&nbsp;Wangmeng Zuo","doi":"10.1016/j.neucom.2024.128880","DOIUrl":null,"url":null,"abstract":"<div><div>It is a challenging task to recover sharp image from a single defocus blurry image in real-world applications. On many modern cameras, dual-pixel (DP) sensors create two-image views, based on which stereo information can be exploited to benefit defocus deblurring. Despite the impressive results achieved by existing DP defocus deblurring methods, the misalignment between DP image views is still not studied, leaving room for improving DP defocus deblurring. In this work, we propose a Dual-Pixel Alignment Network (DPANet) for defocus deblurring. Generally, DPANet is an encoder–decoder with skip-connections, where two branches with shared parameters in the encoder are employed to extract and align deep features from left and right views, and one decoder is adopted to fuse aligned features for predicting the sharp image. Due to that DP views suffer from different blur amounts, it is not trivial to align left and right views. To this end, we propose novel encoder alignment module (EAM) and decoder alignment module (DAM). In particular, a correlation layer is suggested in EAM to measure the disparity between DP views, whose deep features can then be accordingly aligned using deformable convolutions. DAM can further enhance the alignment of skip-connected features from encoder and deep features in decoder. By introducing several EAMs and DAMs, DP views in DPANet can be well aligned for better predicting latent sharp image. Experimental results on real-world datasets show that our DPANet is notably superior to state-of-the-art deblurring methods in reducing defocus blur while recovering visually plausible sharp structures and textures.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"616 ","pages":"Article 128880"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224016515","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

It is a challenging task to recover sharp image from a single defocus blurry image in real-world applications. On many modern cameras, dual-pixel (DP) sensors create two-image views, based on which stereo information can be exploited to benefit defocus deblurring. Despite the impressive results achieved by existing DP defocus deblurring methods, the misalignment between DP image views is still not studied, leaving room for improving DP defocus deblurring. In this work, we propose a Dual-Pixel Alignment Network (DPANet) for defocus deblurring. Generally, DPANet is an encoder–decoder with skip-connections, where two branches with shared parameters in the encoder are employed to extract and align deep features from left and right views, and one decoder is adopted to fuse aligned features for predicting the sharp image. Due to that DP views suffer from different blur amounts, it is not trivial to align left and right views. To this end, we propose novel encoder alignment module (EAM) and decoder alignment module (DAM). In particular, a correlation layer is suggested in EAM to measure the disparity between DP views, whose deep features can then be accordingly aligned using deformable convolutions. DAM can further enhance the alignment of skip-connected features from encoder and deep features in decoder. By introducing several EAMs and DAMs, DP views in DPANet can be well aligned for better predicting latent sharp image. Experimental results on real-world datasets show that our DPANet is notably superior to state-of-the-art deblurring methods in reducing defocus blur while recovering visually plausible sharp structures and textures.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信