Multiscale Cloud-Based Pipeline for Neuronal Electrophysiology Analysis and Visualization.

Jinghui Geng, Kateryna Voitiuk, David F Parks, Ash Robbins, Alex Spaeth, Jessica L Sevetson, Sebastian Hernandez, Hunter E Schweiger, John P Andrews, Spencer T Seiler, Matthew A T Elliott, Edward F Chang, Tomasz J Nowakowski, Rob Currie, Mohammed A Mostajo-Radji, David Haussler, Tal Sharf, Sofie R Salama, Mircea Teodorescu
{"title":"Multiscale Cloud-Based Pipeline for Neuronal Electrophysiology Analysis and Visualization.","authors":"Jinghui Geng, Kateryna Voitiuk, David F Parks, Ash Robbins, Alex Spaeth, Jessica L Sevetson, Sebastian Hernandez, Hunter E Schweiger, John P Andrews, Spencer T Seiler, Matthew A T Elliott, Edward F Chang, Tomasz J Nowakowski, Rob Currie, Mohammed A Mostajo-Radji, David Haussler, Tal Sharf, Sofie R Salama, Mircea Teodorescu","doi":"10.1101/2024.11.14.623530","DOIUrl":null,"url":null,"abstract":"<p><p>Electrophysiology offers a high-resolution method for real-time measurement of neural activity. Longitudinal recordings from high-density microelectrode arrays (HD-MEAs) can be of considerable size for local storage and of substantial complexity for extracting neural features and network dynamics. Analysis is often demanding due to the need for multiple software tools with different runtime dependencies. To address these challenges, we developed an open-source cloud-based pipeline to store, analyze, and visualize neuronal electrophysiology recordings from HD-MEAs. This pipeline is dependency agnostic by utilizing cloud storage, cloud computing resources, and an Internet of Things messaging protocol. We containerized the services and algorithms to serve as scalable and flexible building blocks within the pipeline. In this paper, we applied this pipeline on two types of cultures, cortical organoids and <i>ex vivo</i> brain slice recordings to show that this pipeline simplifies the data analysis process and facilitates understanding neuronal activity.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601321/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.11.14.623530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrophysiology offers a high-resolution method for real-time measurement of neural activity. Longitudinal recordings from high-density microelectrode arrays (HD-MEAs) can be of considerable size for local storage and of substantial complexity for extracting neural features and network dynamics. Analysis is often demanding due to the need for multiple software tools with different runtime dependencies. To address these challenges, we developed an open-source cloud-based pipeline to store, analyze, and visualize neuronal electrophysiology recordings from HD-MEAs. This pipeline is dependency agnostic by utilizing cloud storage, cloud computing resources, and an Internet of Things messaging protocol. We containerized the services and algorithms to serve as scalable and flexible building blocks within the pipeline. In this paper, we applied this pipeline on two types of cultures, cortical organoids and ex vivo brain slice recordings to show that this pipeline simplifies the data analysis process and facilitates understanding neuronal activity.

基于多尺度云的神经元电生理学分析和可视化管道。
电生理学提供了一种实时测量神经活动的高分辨率方法。生成的大量数据需要高效的存储和复杂的处理,以提取神经功能和网络动态。然而,由于需要多种运行时依赖性不同的软件工具,分析工作往往具有挑战性。高密度微电极阵列(HD-MEAs)的纵向记录对于本地存储来说可能相当大,从而使数据管理、共享和备份变得复杂。为了应对这些挑战,我们开发了一种基于云的开源管道,用于存储、分析和可视化来自 HD-MEAs 的神经元电生理学记录。通过利用云存储、云计算资源和物联网消息传输协议,该流水线与依赖关系无关。我们将分析算法容器化,使其成为管道中可扩展且灵活的构建模块。我们设计了图形用户界面和命令行工具,以消除对编程技能的要求。交互式可视化提供了各种神经元特征的多模态信息。这种基于云的管道是电生理学数据处理、本地软件工具局限性和存储限制的有效解决方案。它简化了电生理数据分析过程,有助于理解神经元活动。在本文中,我们将这一管道应用于两种类型的培养物:皮层有机体和体外脑切片记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信