iModMix: Integrative Module Analysis for Multi-omics Data.

Isis Narváez-Bandera, Ashley Lui, Yonatan Ayalew Mekonnen, Vanessa Rubio, Noah Sulman, Christopher Wilson, Hayley D Ackerman, Oscar E Ospina, Guillermo Gonzalez-Calderon, Elsa Flores, Qian Li, Ann Chen, Brooke Fridley, Paul Stewart
{"title":"<i>iModMix</i>: Integrative Module Analysis for Multi-omics Data.","authors":"Isis Narváez-Bandera, Ashley Lui, Yonatan Ayalew Mekonnen, Vanessa Rubio, Noah Sulman, Christopher Wilson, Hayley D Ackerman, Oscar E Ospina, Guillermo Gonzalez-Calderon, Elsa Flores, Qian Li, Ann Chen, Brooke Fridley, Paul Stewart","doi":"10.1101/2024.11.12.623208","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>The integration of metabolomics with other omics (\"multi-omics\") offers complementary insights into disease biology. However, this integration remains challenging due to the fragmented landscape of current methodologies, which often require programming experience or bioinformatics expertise. Moreover, existing approaches are limited in their ability to accommodate unidentified metabolites, resulting in the exclusion of a significant portion of data from untargeted metabolomics experiments. Here, we introduce <i>iModMix - Integrative Module Analysis for Multi-omics Data</i>, a novel approach that uses a graphical lasso to construct network modules for integration and analysis of multi-omics data. <i>iModMix</i> uses a horizontal integration strategy, allowing metabolomics data to be analyzed alongside proteomics or transcriptomics to explore complex molecular associations within biological systems. Importantly, it can incorporate both identified and unidentified metabolites, addressing a key limitation of existing methodologies. <i>iModMix</i> is available as a user-friendly R Shiny application that requires no programming experience (https://imodmix.moffitt.org), and it includes example data from several publicly available multi-omic studies for exploration. An R package is available for advanced users (https://github.com/biodatalab/iModMix).</p><p><strong>Availability and implementation: </strong>Shiny application: https://imodmix.moffitt.org. The R package and source code: https://github.com/biodatalab/iModMix.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601443/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.11.12.623208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: The integration of metabolomics with other omics ("multi-omics") offers complementary insights into disease biology. However, this integration remains challenging due to the fragmented landscape of current methodologies, which often require programming experience or bioinformatics expertise. Moreover, existing approaches are limited in their ability to accommodate unidentified metabolites, resulting in the exclusion of a significant portion of data from untargeted metabolomics experiments. Here, we introduce iModMix - Integrative Module Analysis for Multi-omics Data, a novel approach that uses a graphical lasso to construct network modules for integration and analysis of multi-omics data. iModMix uses a horizontal integration strategy, allowing metabolomics data to be analyzed alongside proteomics or transcriptomics to explore complex molecular associations within biological systems. Importantly, it can incorporate both identified and unidentified metabolites, addressing a key limitation of existing methodologies. iModMix is available as a user-friendly R Shiny application that requires no programming experience (https://imodmix.moffitt.org), and it includes example data from several publicly available multi-omic studies for exploration. An R package is available for advanced users (https://github.com/biodatalab/iModMix).

Availability and implementation: Shiny application: https://imodmix.moffitt.org. The R package and source code: https://github.com/biodatalab/iModMix.

iModMix : 多组学数据的整合模块分析。
摘要:代谢组学与其他全息组学("多组学")的整合为疾病生物学提供了互补的见解。然而,由于目前的方法支离破碎,往往需要编程经验或生物信息学专业知识,因此这种整合仍具有挑战性。此外,现有方法在容纳未识别代谢物方面能力有限,导致很大一部分来自非靶向代谢组学实验的数据被排除在外。iModMix 采用水平整合策略,允许代谢组学数据与蛋白质组学或转录组学数据一起分析,以探索生物系统内复杂的分子关联。重要的是,iModMix 既能整合已注释的代谢物,也能整合未识别的代谢物,解决了现有方法的一个关键局限。iModMix 是一个用户友好的 R Shiny 应用程序,无需编程经验 ( https://imodmix.moffitt.org ),其中包括几个公开的多组学研究的示例数据,供用户探索。为高级用户提供了一个 R 软件包 ( https://github.com/biodatalab/iModMix )。可用性和实施:Shiny 应用程序:https://imodmix.moffitt.org 。R 软件包和源代码:https://github.com/biodatalab/iModMix 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信