Global Neuron Shape Reasoning with Point Affinity Transformers.

J Troidl, J Knittel, W Li, F Zhan, H Pfister, S Turaga
{"title":"Global Neuron Shape Reasoning with Point Affinity Transformers.","authors":"J Troidl, J Knittel, W Li, F Zhan, H Pfister, S Turaga","doi":"10.1101/2024.11.24.625067","DOIUrl":null,"url":null,"abstract":"<p><p>Connectomics is a field of neuroscience that maps the brain's intricate wiring diagram. Accurate neuron segmentation from microscopy volumes is essential for automating connectome reconstruction. However, state-of-the-art algorithms use image-based convolutional neural networks limited to local neuron shape context. Thus, we introduce a new framework that reasons over global neuron shape with a novel point affinity transformer. Our framework embeds a (multi-)neuron point cloud into a fixed-length feature set from which we can decode any point pair affinities, enabling clustering neuron point clouds for automatic proofreading. We also show that the learned feature set can easily be mapped to a contrastive embedding space that enables neuron type classification using a simple classifier. Our approach excels in two demanding connectomics tasks: correcting segmentation errors and classifying neuron types. Evaluated on three benchmark datasets derived from state-of-the-art connectomes, our method outperforms point transformers, graph neural networks, and unsupervised clustering baselines.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601551/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.11.24.625067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Connectomics is a field of neuroscience that maps the brain's intricate wiring diagram. Accurate neuron segmentation from microscopy volumes is essential for automating connectome reconstruction. However, state-of-the-art algorithms use image-based convolutional neural networks limited to local neuron shape context. Thus, we introduce a new framework that reasons over global neuron shape with a novel point affinity transformer. Our framework embeds a (multi-)neuron point cloud into a fixed-length feature set from which we can decode any point pair affinities, enabling clustering neuron point clouds for automatic proofreading. We also show that the learned feature set can easily be mapped to a contrastive embedding space that enables neuron type classification using a simple classifier. Our approach excels in two demanding connectomics tasks: correcting segmentation errors and classifying neuron types. Evaluated on three benchmark datasets derived from state-of-the-art connectomes, our method outperforms point transformers, graph neural networks, and unsupervised clustering baselines.

用点亲和变换器进行全局神经元形状推理
连接组学是神经科学的一个分支领域,旨在绘制大脑错综复杂的线路图。要实现连接组重建的自动化,就必须从显微镜体积中准确分割神经元。然而,目前最先进的算法使用的是基于图像的卷积神经网络,仅限于局部神经元形状的上下文。因此,我们引入了一个新的框架,利用新颖的点亲和力变换器对全局神经元形状进行推理。我们的框架将(多)神经元点云嵌入固定长度的特征集,我们可以从中解码任何点对的亲和性,从而对神经元点云进行聚类,实现自动校对。我们还证明,学习到的特征集可以轻松映射到对比嵌入空间,从而使用简单的 KNN 分类器进行神经元类型分类。我们的方法在两项要求苛刻的连接组学任务中表现出色:校对分割错误和神经元类型分类。我们的方法在源自最先进的连接组学的三个基准数据集上进行了评估,结果优于点变换器、图神经网络和无监督聚类基线。1.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信