Carla Frensch, Claus Maximilian Bäcker, Walter Jentzen, Ann-Kristin Lüvelsmeyer, Mohammadreza Teimoorisichani, Jörg Wulff, Beate Timmermann, Christian Bäumer
{"title":"Dose distributions of proton therapy plans are robust against lowering the resolution of CTs combined with increasing noise","authors":"Carla Frensch, Claus Maximilian Bäcker, Walter Jentzen, Ann-Kristin Lüvelsmeyer, Mohammadreza Teimoorisichani, Jörg Wulff, Beate Timmermann, Christian Bäumer","doi":"10.1002/mp.17530","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Treatment planning in radiation therapy (RT) is performed on image sets acquired with commercial x-ray computed tomography (CT) scanners. Considering an increased frequency of verification scans for adaptive RT and the advent of alternatives to x-ray CTs, there is a need to review the requirements for image sets used in RT planning.</p>\n </section>\n \n <section>\n \n <h3> Purpose</h3>\n \n <p>This study aims to derive the required image quality (IQ) for the computation of the dose distribution in proton therapy (PT) regarding spatial resolution and the combination of spatial resolution and noise. The knowledge gained is used to explore the potential for dose reduction in tomography-guided PT.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Mathematical considerations indicate that the required spatial resolution for dose computation is on the scale of the set-up margins fed into the robust optimization. This hypothesis was tested by processing retrospectively 12 clinical PT cases, which reflect a variety of tumor localizations. Image sets were low-pass filtered and were made noisy in a generic manner. Dose distributions on the modified CT scans were computed with a Monte-Carlo dose engine. The similarity of these dose distributions with clinical ones was quantified with the gamma-index (1 mm/1%). The potential reduction of the x-ray exposure compared to the planning CT scan was estimated.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Dose distributions within the irradiated volume were robust against low-pass filtering of the CTs with kernels up to a full-width-at-half-maximum of 4 mm, that is, the gamma pass rate (1 mm/1%) was <span></span><math>\n <semantics>\n <mo>≥</mo>\n <annotation>$\\ge$</annotation>\n </semantics></math>98%. The limit of the filter width was 6 mm for brain tumors and 8 mm for targets in the abdomen. These pass rates remained approximately unchanged if a limited amount of noise was added to the CT image sets. The estimated potential reductions of the x-ray exposure were at least a factor of 20.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The requirements on IQ in terms of spatial resolution in combination with noise for computing the dose in PT are clearly lower than the IQ of current clinical planning. The results apply, for example, to ultra-low dose x-ray CTs, proton CTs with coarse spatial detection, and attenuation images from the joint reconstruction of time-of-flight PET scans.</p>\n </section>\n </div>","PeriodicalId":18384,"journal":{"name":"Medical physics","volume":"52 2","pages":"1293-1304"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mp.17530","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mp.17530","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Treatment planning in radiation therapy (RT) is performed on image sets acquired with commercial x-ray computed tomography (CT) scanners. Considering an increased frequency of verification scans for adaptive RT and the advent of alternatives to x-ray CTs, there is a need to review the requirements for image sets used in RT planning.
Purpose
This study aims to derive the required image quality (IQ) for the computation of the dose distribution in proton therapy (PT) regarding spatial resolution and the combination of spatial resolution and noise. The knowledge gained is used to explore the potential for dose reduction in tomography-guided PT.
Methods
Mathematical considerations indicate that the required spatial resolution for dose computation is on the scale of the set-up margins fed into the robust optimization. This hypothesis was tested by processing retrospectively 12 clinical PT cases, which reflect a variety of tumor localizations. Image sets were low-pass filtered and were made noisy in a generic manner. Dose distributions on the modified CT scans were computed with a Monte-Carlo dose engine. The similarity of these dose distributions with clinical ones was quantified with the gamma-index (1 mm/1%). The potential reduction of the x-ray exposure compared to the planning CT scan was estimated.
Results
Dose distributions within the irradiated volume were robust against low-pass filtering of the CTs with kernels up to a full-width-at-half-maximum of 4 mm, that is, the gamma pass rate (1 mm/1%) was 98%. The limit of the filter width was 6 mm for brain tumors and 8 mm for targets in the abdomen. These pass rates remained approximately unchanged if a limited amount of noise was added to the CT image sets. The estimated potential reductions of the x-ray exposure were at least a factor of 20.
Conclusions
The requirements on IQ in terms of spatial resolution in combination with noise for computing the dose in PT are clearly lower than the IQ of current clinical planning. The results apply, for example, to ultra-low dose x-ray CTs, proton CTs with coarse spatial detection, and attenuation images from the joint reconstruction of time-of-flight PET scans.
期刊介绍:
Medical Physics publishes original, high impact physics, imaging science, and engineering research that advances patient diagnosis and therapy through contributions in 1) Basic science developments with high potential for clinical translation 2) Clinical applications of cutting edge engineering and physics innovations 3) Broadly applicable and innovative clinical physics developments
Medical Physics is a journal of global scope and reach. By publishing in Medical Physics your research will reach an international, multidisciplinary audience including practicing medical physicists as well as physics- and engineering based translational scientists. We work closely with authors of promising articles to improve their quality.