Nigeria's malaria prevalence in 2015: a geospatial, exploratory district-level approach.

IF 1 4区 医学 Q4 HEALTH CARE SCIENCES & SERVICES
Mina Whyte, Kennedy Mwai Wambui, Eustasius Musenge
{"title":"Nigeria's malaria prevalence in 2015: a geospatial, exploratory district-level approach.","authors":"Mina Whyte, Kennedy Mwai Wambui, Eustasius Musenge","doi":"10.4081/gh.2024.1243","DOIUrl":null,"url":null,"abstract":"<p><p>This study used data from the second Nigeria Malaria Indicator Survey (NMIS) conducted in 2015 to investigate the spatial distribution of malaria prevalence in the country and identify its associated factors. Nigeria is divided into 36 states with 109 senatorial districts, most of which are affected by malaria, a major cause of morbidity and mortality in children under five years of age. We carried out an ecological study with analysis at the senatorial district level. A malaria prevalence map was produced combining geographic information systems data from the Nigeria Malaria Indicator Survey (NMIS) of 2015 with shape files from an open data-sharing platform. Spatial autoregressive models were fitted using a set of key covariates. Malaria prevalence in children under-five was highest in Kebbi South senatorial district (70.6%). It was found that poorest wealth index (β = 0.10 (95% CI: 0.01, 0.20), p = 0.04), mothers having only secondary level of education (β = 0.78 (95% CI: 0.05, 1.51), p = 0.04) and households without mosquito bed nets (β = 0.21 (95% CI: 0.02, 0.39), p = 0.03) were all significantly associated with higher malaria prevalence. Moran's I (54.81, p<0.001) showed spatial dependence of malaria prevalence across contiguous districts and spatial autoregressive modelling demonstrated significant spill-over effect of malaria prevalence. Maps produced in this study provide a useful graphical representation of the spatial distribution of malaria prevalence based on NMIS-2015 data. Clustering of malaria prevalence in certain areas further highlights the need for sustained malaria elimination interventions across affected regions in order to break the chain of transmission.</p>","PeriodicalId":56260,"journal":{"name":"Geospatial Health","volume":"19 2","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geospatial Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4081/gh.2024.1243","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

This study used data from the second Nigeria Malaria Indicator Survey (NMIS) conducted in 2015 to investigate the spatial distribution of malaria prevalence in the country and identify its associated factors. Nigeria is divided into 36 states with 109 senatorial districts, most of which are affected by malaria, a major cause of morbidity and mortality in children under five years of age. We carried out an ecological study with analysis at the senatorial district level. A malaria prevalence map was produced combining geographic information systems data from the Nigeria Malaria Indicator Survey (NMIS) of 2015 with shape files from an open data-sharing platform. Spatial autoregressive models were fitted using a set of key covariates. Malaria prevalence in children under-five was highest in Kebbi South senatorial district (70.6%). It was found that poorest wealth index (β = 0.10 (95% CI: 0.01, 0.20), p = 0.04), mothers having only secondary level of education (β = 0.78 (95% CI: 0.05, 1.51), p = 0.04) and households without mosquito bed nets (β = 0.21 (95% CI: 0.02, 0.39), p = 0.03) were all significantly associated with higher malaria prevalence. Moran's I (54.81, p<0.001) showed spatial dependence of malaria prevalence across contiguous districts and spatial autoregressive modelling demonstrated significant spill-over effect of malaria prevalence. Maps produced in this study provide a useful graphical representation of the spatial distribution of malaria prevalence based on NMIS-2015 data. Clustering of malaria prevalence in certain areas further highlights the need for sustained malaria elimination interventions across affected regions in order to break the chain of transmission.

2015 年尼日利亚疟疾流行情况:地区级地理空间探索方法。
本研究使用了 2015 年开展的第二次尼日利亚疟疾指标调查(NMIS)的数据,以调查该国疟疾流行的空间分布情况,并确定其相关因素。尼日利亚分为 36 个州,109 个参议院辖区,其中大部分都受到疟疾的影响,而疟疾是导致五岁以下儿童发病和死亡的主要原因。我们开展了一项生态研究,在参议院地区一级进行分析。我们将 2015 年尼日利亚疟疾指标调查(NMIS)的地理信息系统数据与开放数据共享平台的形状文件相结合,制作了疟疾流行地图。利用一组关键协变量拟合了空间自回归模型。五岁以下儿童的疟疾流行率在凯比南参议院地区最高(70.6%)。研究发现,最贫困指数(β = 0.10 (95% CI: 0.01, 0.20), p = 0.04)、母亲仅有中学教育水平(β = 0.78 (95% CI: 0.05, 1.51), p = 0.04)和没有蚊帐的家庭(β = 0.21 (95% CI: 0.02, 0.39), p = 0.03)都与疟疾流行率较高有显著关联。莫兰 I(54.81,p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geospatial Health
Geospatial Health 医学-公共卫生、环境卫生与职业卫生
CiteScore
2.40
自引率
11.80%
发文量
48
审稿时长
12 months
期刊介绍: The focus of the journal is on all aspects of the application of geographical information systems, remote sensing, global positioning systems, spatial statistics and other geospatial tools in human and veterinary health. The journal publishes two issues per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信