Time-resolved diamond magnetic microscopy of superparamagnetic iron-oxide nanoparticles.

ArXiv Pub Date : 2024-11-20
B A Richards, N Ristoff, J Smits, A Jeronimo Perez, I Fescenko, M D Aiello, F Hubert, Y Silani, N Mosavian, M Saleh Ziabari, A Berzins, J T Damron, P Kehayias, D L Huber, A M Mounce, M P Lilly, T Karaulanov, A Jarmola, A Laraoui, V M Acosta
{"title":"Time-resolved diamond magnetic microscopy of superparamagnetic iron-oxide nanoparticles.","authors":"B A Richards, N Ristoff, J Smits, A Jeronimo Perez, I Fescenko, M D Aiello, F Hubert, Y Silani, N Mosavian, M Saleh Ziabari, A Berzins, J T Damron, P Kehayias, D L Huber, A M Mounce, M P Lilly, T Karaulanov, A Jarmola, A Laraoui, V M Acosta","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Superparamagnetic iron-oxide nanoparticles (SPIONs) are promising probes for biomedical imaging, but the heterogeneity of their magnetic properties is difficult to characterize with existing methods. Here, we perform widefield imaging of the stray magnetic fields produced by hundreds of isolated ~30-nm SPIONs using a magnetic microscope based on nitrogen-vacancy centers in diamond. By analyzing the SPION magnetic field patterns as a function of applied magnetic field, we observe substantial field-dependent transverse magnetization components that are typically obscured with ensemble characterization methods. We find negligible hysteresis in each of the three magnetization components for nearly all SPIONs in our sample. Most SPIONs exhibit a sharp Langevin saturation curve, enumerated by a characteristic polarizing applied field, B_c. The B_c distribution is highly asymmetric, with a standard deviation (1.4 mT) that is larger than the median (0.6 mT). Using time-resolved magnetic microscopy, we directly record SPION N\\'eel relaxation, after switching off a 31 mT applied field, with a temporal resolution of ~60 ms that is limited by the ring-down time of the electromagnet coils. For small bias fields B_{hold}=1.5-3.5 mT, we observe a broad range of SPION N\\'eel relaxation times--from milliseconds to seconds--that are consistent with an exponential dependence on B_{hold}. Our time-resolved diamond magnetic microscopy study reveals rich SPION sample heterogeneity and may be extended to other fundamental studies of nanomagnetism.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601802/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Superparamagnetic iron-oxide nanoparticles (SPIONs) are promising probes for biomedical imaging, but the heterogeneity of their magnetic properties is difficult to characterize with existing methods. Here, we perform widefield imaging of the stray magnetic fields produced by hundreds of isolated ~30-nm SPIONs using a magnetic microscope based on nitrogen-vacancy centers in diamond. By analyzing the SPION magnetic field patterns as a function of applied magnetic field, we observe substantial field-dependent transverse magnetization components that are typically obscured with ensemble characterization methods. We find negligible hysteresis in each of the three magnetization components for nearly all SPIONs in our sample. Most SPIONs exhibit a sharp Langevin saturation curve, enumerated by a characteristic polarizing applied field, B_c. The B_c distribution is highly asymmetric, with a standard deviation (1.4 mT) that is larger than the median (0.6 mT). Using time-resolved magnetic microscopy, we directly record SPION N\'eel relaxation, after switching off a 31 mT applied field, with a temporal resolution of ~60 ms that is limited by the ring-down time of the electromagnet coils. For small bias fields B_{hold}=1.5-3.5 mT, we observe a broad range of SPION N\'eel relaxation times--from milliseconds to seconds--that are consistent with an exponential dependence on B_{hold}. Our time-resolved diamond magnetic microscopy study reveals rich SPION sample heterogeneity and may be extended to other fundamental studies of nanomagnetism.

超顺磁性氧化铁纳米粒子的时间分辨金刚石磁性显微镜。
超顺磁性氧化铁纳米粒子(SPIONs)是一种很有前景的生物医学成像探针,但现有方法难以表征其磁性能的异质性。在这里,我们利用基于金刚石中氮空位中心的磁显微镜,对数百个孤立的 ~30-nm SPIONs 产生的杂散磁场进行了宽场成像。通过分析 SPION 磁场模式与外加磁场的函数关系,我们观察到了大量与磁场相关的横向磁化成分,而这些成分通常会被集合表征方法所掩盖。我们发现样品中几乎所有 SPION 的三个磁化分量中的磁滞都可以忽略不计。大多数 SPIONs 都表现出一条尖锐的朗格文饱和曲线,并通过一个特征极化外加磁场 B_c 加以列举。B_c 分布高度不对称,标准偏差(1.4 mT)大于中值(0.6 mT)。利用时间分辨磁显微镜,我们直接记录了关闭 31 mT 外加磁场后 SPION N\'eel 的弛豫,时间分辨率约为 60 毫秒,这受到电磁线圈环形下降时间的限制。对于 B_{hold}=1.5-3.5 mT 的小偏置磁场,我们观察到范围广泛的硅核弛豫时间--从毫秒到秒--与 B_{hold} 的指数依赖关系一致。我们的时间分辨金刚石磁显微镜研究揭示了丰富的SPION样品异质性,并可扩展到纳米磁性的其他基础研究中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信