Opportunities to design better computer vison-assisted food diaries to support individuals and experts in dietary assessment: An observation and interview study with nutrition experts.

PLOS digital health Pub Date : 2024-11-27 eCollection Date: 2024-11-01 DOI:10.1371/journal.pdig.0000665
Chia-Fang Chung, Pei-Ni Chiang, Connie Ann Tan, Chien-Chun Wu, Haley Schmidt, Aric Kotarski, David Guise
{"title":"Opportunities to design better computer vison-assisted food diaries to support individuals and experts in dietary assessment: An observation and interview study with nutrition experts.","authors":"Chia-Fang Chung, Pei-Ni Chiang, Connie Ann Tan, Chien-Chun Wu, Haley Schmidt, Aric Kotarski, David Guise","doi":"10.1371/journal.pdig.0000665","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic visual recognition for photo-based food diaries is increasingly prevalent. However, existing tools in food recognition often focus on food classification and calorie counting, which may not be sufficient to support the variety of food and healthy eating goals people have. To understand how to better design computer-vision-based food diaries to support healthy eating, we began to examine how nutrition experts, such as dietitians, use the visual features of food photos to evaluate diet quality. We conducted an observation and interview study with 18 dietitians, during which we asked the dietitians to review a seven-day photo-based food diary and fill out an evaluation form about their observations, recommendations, and questions. We then conducted follow-up interviews to understand their strategies, needs, and challenges of photo diary review. Our findings show that dietitians used the photo features to understand long-term eating patterns, diet variety, eating contexts, and food portions. Dietitians also adopted various strategies to achieve these understandings, such as grouping photos to find patterns, using color to estimate food variety, and identifying background objects to infer eating contexts. These findings suggest design opportunities for future compute-vision-based food diaries to account for dietary patterns over time, incorporate contextual information in dietary analysis, and support collaborations between nutrition experts, clients, and computer vision systems in dietary review and provide individualized recommendations.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 11","pages":"e0000665"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602110/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic visual recognition for photo-based food diaries is increasingly prevalent. However, existing tools in food recognition often focus on food classification and calorie counting, which may not be sufficient to support the variety of food and healthy eating goals people have. To understand how to better design computer-vision-based food diaries to support healthy eating, we began to examine how nutrition experts, such as dietitians, use the visual features of food photos to evaluate diet quality. We conducted an observation and interview study with 18 dietitians, during which we asked the dietitians to review a seven-day photo-based food diary and fill out an evaluation form about their observations, recommendations, and questions. We then conducted follow-up interviews to understand their strategies, needs, and challenges of photo diary review. Our findings show that dietitians used the photo features to understand long-term eating patterns, diet variety, eating contexts, and food portions. Dietitians also adopted various strategies to achieve these understandings, such as grouping photos to find patterns, using color to estimate food variety, and identifying background objects to infer eating contexts. These findings suggest design opportunities for future compute-vision-based food diaries to account for dietary patterns over time, incorporate contextual information in dietary analysis, and support collaborations between nutrition experts, clients, and computer vision systems in dietary review and provide individualized recommendations.

设计更好的计算机视觉辅助食物日记以支持个人和专家进行饮食评估的机会:对营养专家的观察和访谈研究。
基于照片的食物日记的自动视觉识别越来越普遍。然而,现有的食物识别工具通常侧重于食物分类和卡路里计算,这可能不足以支持人们的各种食物和健康饮食目标。为了了解如何更好地设计基于计算机视觉的食物日记以支持健康饮食,我们开始研究营养专家(如营养师)如何使用食物照片的视觉特征来评估饮食质量。我们对 18 名营养师进行了观察和访谈研究,在此期间,我们要求营养师查看基于照片的七天食物日记,并填写一份评估表,内容包括他们的观察结果、建议和问题。然后,我们进行了后续访谈,以了解他们在查看照片日记时的策略、需求和挑战。我们的研究结果表明,营养师利用照片功能来了解长期饮食模式、饮食种类、饮食环境和食物份量。营养师们还采用了各种策略来实现这些理解,例如将照片分组以发现模式、使用颜色来估计食物种类以及识别背景物体以推断饮食环境。这些发现为未来基于计算机视觉的食物日记的设计提供了机会,使其能够考虑到一段时间内的饮食模式,在饮食分析中纳入背景信息,支持营养专家、客户和计算机视觉系统在饮食审查中的合作,并提供个性化建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信