Parastoo Shahrouzi, Youness Azimzade, Wioletta Brankiewicz-Kopcinska, Sugandha Bhatia, David Kunke, Derek Richard, Xavier Tekpli, Vessela N Kristensen, Pascal H G Duijf
{"title":"Loss of chromosome cytoband 13q14.2 orchestrates breast cancer pathogenesis and drug response.","authors":"Parastoo Shahrouzi, Youness Azimzade, Wioletta Brankiewicz-Kopcinska, Sugandha Bhatia, David Kunke, Derek Richard, Xavier Tekpli, Vessela N Kristensen, Pascal H G Duijf","doi":"10.1186/s13058-024-01924-4","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer (BCa) is a major global health challenge. The BCa genome often carries extensive somatic copy number alterations (CNAs), including gains/amplifications and losses/deletions. These CNAs significantly affect tumor development, drug response and patient survival. However, how individual CNAs contribute is mostly elusive. We identified loss of chromosome 13q14.2 as a key CNA in BCa, occurring in up to 63% of patients, depending on the subtype, and correlating with poor survival. Through multi-omics and in vitro analyses, we uncover a paradoxical role of 13q14.2 loss, promoting both cell cycle and pro-apoptotic pathways in cancer cells, while also associating with increased NK cell and macrophage populations in the tumor microenvironment. Notably, 13q14.2 loss increases BCa susceptibility to BCL2 inhibitors, both in vitro and in patient-derived xenografts. Thus, 13q14.2 loss could serve as a biomarker for BCa prognosis and treatment, potentially improving outcomes for BCa patients.</p>","PeriodicalId":49227,"journal":{"name":"Breast Cancer Research","volume":"26 1","pages":"170"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600738/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13058-024-01924-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer (BCa) is a major global health challenge. The BCa genome often carries extensive somatic copy number alterations (CNAs), including gains/amplifications and losses/deletions. These CNAs significantly affect tumor development, drug response and patient survival. However, how individual CNAs contribute is mostly elusive. We identified loss of chromosome 13q14.2 as a key CNA in BCa, occurring in up to 63% of patients, depending on the subtype, and correlating with poor survival. Through multi-omics and in vitro analyses, we uncover a paradoxical role of 13q14.2 loss, promoting both cell cycle and pro-apoptotic pathways in cancer cells, while also associating with increased NK cell and macrophage populations in the tumor microenvironment. Notably, 13q14.2 loss increases BCa susceptibility to BCL2 inhibitors, both in vitro and in patient-derived xenografts. Thus, 13q14.2 loss could serve as a biomarker for BCa prognosis and treatment, potentially improving outcomes for BCa patients.
期刊介绍:
Breast Cancer Research, an international, peer-reviewed online journal, publishes original research, reviews, editorials, and reports. It features open-access research articles of exceptional interest across all areas of biology and medicine relevant to breast cancer. This includes normal mammary gland biology, with a special emphasis on the genetic, biochemical, and cellular basis of breast cancer. In addition to basic research, the journal covers preclinical, translational, and clinical studies with a biological basis, including Phase I and Phase II trials.