IL-17A-Induced Redox Imbalance and Inflammatory Responses in Mice Lung via Act1-TRAF6-IKBα Signaling Pathway: Implications for Lung Disease Pathogenesis.
{"title":"IL-17A-Induced Redox Imbalance and Inflammatory Responses in Mice Lung via Act1-TRAF6-IKBα Signaling Pathway: Implications for Lung Disease Pathogenesis.","authors":"Ekta Swarnamayee Panda, Avtar Singh Gautam, Shivam Kumar Pandey, Rakesh Kumar Singh","doi":"10.1007/s10753-024-02199-9","DOIUrl":null,"url":null,"abstract":"<p><p>IL-17A is a potent proinflammatory cytokine that plays a crucial role in the pathogenesis of various lung diseases. This study focused on the evaluation of the role of IL-17 receptor signaling through one-week intranasal exposure of IL-17A in lung tissues of BALB/c mice. IL-17A triggered inflammatory responses in the mice lungs and led to changes in the morphological alveolar arrangements. Exposure of IL-17A induced redox imbalance by triggering an increase in the level of the pro-oxidants (reactive oxygen species, nitrite and malondialdehyde) and reduction of the levels of antioxidant proteins (glutathione, superoxide dismutase and catalase) in the lung tissue. IL-17A also caused a significant elevation in the levels of proinflammatory cytokines lines including TNF-α, IL-1β and IL-6, in lung tissue as well as in plasma. More interestingly, these changes were accompanied by the alterations in IL-17 receptor downstream signaling through activation of IL-17R-Act1-TRAF6-IKBα-mediated pathway. IL-17A exposure also caused lung tissue injury, recruitment and polarization of immune cells from anti-inflammatory to pro-inflammatory. This study clearly demonstrated the role of IL-17A-induced signaling in worsening lung inflammatory diseases, and hence points towards its emergence as an important therapeutic target to control lung inflammation.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02199-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
IL-17A is a potent proinflammatory cytokine that plays a crucial role in the pathogenesis of various lung diseases. This study focused on the evaluation of the role of IL-17 receptor signaling through one-week intranasal exposure of IL-17A in lung tissues of BALB/c mice. IL-17A triggered inflammatory responses in the mice lungs and led to changes in the morphological alveolar arrangements. Exposure of IL-17A induced redox imbalance by triggering an increase in the level of the pro-oxidants (reactive oxygen species, nitrite and malondialdehyde) and reduction of the levels of antioxidant proteins (glutathione, superoxide dismutase and catalase) in the lung tissue. IL-17A also caused a significant elevation in the levels of proinflammatory cytokines lines including TNF-α, IL-1β and IL-6, in lung tissue as well as in plasma. More interestingly, these changes were accompanied by the alterations in IL-17 receptor downstream signaling through activation of IL-17R-Act1-TRAF6-IKBα-mediated pathway. IL-17A exposure also caused lung tissue injury, recruitment and polarization of immune cells from anti-inflammatory to pro-inflammatory. This study clearly demonstrated the role of IL-17A-induced signaling in worsening lung inflammatory diseases, and hence points towards its emergence as an important therapeutic target to control lung inflammation.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.