Roman Gajda , Wojciech Sławiński , Tomasz Poręba , Jan Parafiniuk , Mohamed Mezouar , Przemysław Dera , Krzysztof Woźniak
{"title":"Incommensurately modulated structure of Zn4Si2O7(OH)2·H2O at high pressure","authors":"Roman Gajda , Wojciech Sławiński , Tomasz Poręba , Jan Parafiniuk , Mohamed Mezouar , Przemysław Dera , Krzysztof Woźniak","doi":"10.1107/S2052252524011060","DOIUrl":null,"url":null,"abstract":"<div><div>Refinement of the hemimorphite crystal structure using single-crystal synchrotron X-ray diffraction data collected at high pressure revealed a structural phase transition into an incommensurately modulated structure, accompanied by the appearance of satellite reflections.</div></div><div><div>High-resolution single-crystal X-ray diffraction experiments on Zn<sub>4</sub>Si<sub>2</sub>O<sub>7</sub>(OH)<sub>2</sub>·H<sub>2</sub>O hemimorphite were conducted at high pressure using diamond anvil cells at several different synchrotron facilities (ESRF, Elettra, DESY). Experimental data confirmed the existence of a previously reported phase transition and revealed the exact nature of the incommensurate modulation. We report the incommensurately modulated structure described in the (3+1)D space group <em>Pnn</em>2(0, β, 0)000. We have determined the modulation mechanism, which involves the fluctuation of atoms between two main positions, occurring mainly along the [100] direction, perpendicular to the modulation vector. Moreover, our results reveal that the phase transition occurs at lower pressure than previously reported.</div></div>","PeriodicalId":14775,"journal":{"name":"IUCrJ","volume":"12 1","pages":"Pages 62-73"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707689/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUCrJ","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2052252525000107","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Refinement of the hemimorphite crystal structure using single-crystal synchrotron X-ray diffraction data collected at high pressure revealed a structural phase transition into an incommensurately modulated structure, accompanied by the appearance of satellite reflections.
High-resolution single-crystal X-ray diffraction experiments on Zn4Si2O7(OH)2·H2O hemimorphite were conducted at high pressure using diamond anvil cells at several different synchrotron facilities (ESRF, Elettra, DESY). Experimental data confirmed the existence of a previously reported phase transition and revealed the exact nature of the incommensurate modulation. We report the incommensurately modulated structure described in the (3+1)D space group Pnn2(0, β, 0)000. We have determined the modulation mechanism, which involves the fluctuation of atoms between two main positions, occurring mainly along the [100] direction, perpendicular to the modulation vector. Moreover, our results reveal that the phase transition occurs at lower pressure than previously reported.
期刊介绍:
IUCrJ is a new fully open-access peer-reviewed journal from the International Union of Crystallography (IUCr).
The journal will publish high-profile articles on all aspects of the sciences and technologies supported by the IUCr via its commissions, including emerging fields where structural results underpin the science reported in the article. Our aim is to make IUCrJ the natural home for high-quality structural science results. Chemists, biologists, physicists and material scientists will be actively encouraged to report their structural studies in IUCrJ.